Int J Stem Cells.  2022 Nov;15(4):395-404. 10.15283/ijsc21149.

Human Umbilical Cord-Derived Mesenchymal Stem Cells Repair SU5416-Injured Emphysema by Inhibiting Apoptosis via Rescuing VEGF-VEGFR2-AKT Pathway in Rats

Affiliations
  • 1Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
  • 2Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
  • 3Department of Otolaryngology-Head and Neck Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China

Abstract

Background and Objectives
Chronic obstructive pulmonary disease (COPD) is a common, frequently-occurring disease and poses a major health concern. Unfortunately, there is current no effective treatment for COPD, particularly emphysema. Recently, experimental treatment of COPD using mesenchymal stem cells (MSCs) mainly focused on bone marrow-derived MSCs (BM-MSCs). Human umbilical cord-derived MSCs (hUC-MSCs) have more advantages compared to BM-MSCs. However, studies on the role of hUC-MSCs in management of COPD are limited. This study sought to explore the role of hUC-MSCs and its action mechanisms in a rat model of VEGF receptor blocker SU5416-injured emphysema.
Methods and Results
hUC-MSCs were characterized by immunophenotype and differentiation analysis. Rats were div-ided into four groups: Control, Control+MSC, SU5416 and SU5416+MSC. Rats in model group were administered with SU5416 for three weeks. At the end of the second week after SU5416 administration, model group were infused with 3×106 hUC-MSCs through tail vein. After 14 days from hUC-MSCs transplantation, rats were euthanized and data were analyzed. HE staining and mean linear intercepts showed that SU5416-treated rats exhibited typical emphysema while emphysematous changes in model rats after hUC-MSCs transplantation disappeared completely and were restored to normal phenotype. Furthermore, hUC-MSCs inhibited apoptosis as shown by TUNEL and Western blotting. ELISA and Western blotting showed hUC-MSCs rescued VEGF-VEGFR2-AKT pathway in emphysematous lungs.
Conclusions
The findings show that hUC-MSCs effectively repair the emphysema injury. This study provides the first evidence that hUC-MSCs inhibit apoptosis via rescuing VEGF- VEGFR2-AKT pathway in a rat model of emphysema.

Keyword

COPD; Emphysema; SU5416; hUC-MSCs; VEGF-VEGFR2-AKT pathway; Apoptosis

Figure

  • Fig. 1 Characterization of hUC-MSCs. (A) Flow cytometry analysis of surface antigens of hUC-MSCs. hUC-MSCs were negative for CD11b, CD19 and CD34, but positive for CD29, CD73 and CD90. (B) Differentiation potential of hUC-MSCs. (a) Osteogenic differentiation results using Alizarin Red staining, numerous cells became Alizarin Red positive. (b) Adipogenic differentiation results using Oil Red O staining, some of the cells contained numerous Oil Red O-positive lipid droplets. (c) Non-sti-mulated control cells grown in regular medium. (a∼c) Magnification, ×100; scale bar, 200 μm.

  • Fig. 2 hUC-MSCs repaired SU5416-induced emphysema. (A) Representative results of HE staining in lung sections chosen from each group. There was no significant difference between the Control group (CON) and the Control+MSC group (CON+MSC). Emphysematous changes were observed in the group treated with SU5416 (SU). hUC-MSCs transplantation repaired SU5416-induced emphysema (SU+MSC). Magnification, ×100; scale bar, 200 μm. (B) Morphometric analysis of the mean linear intercept (MLI). Values of MLI are presented as mean±SEM. *p<0.05 compared with the Control group. #p<0.05 compared with the SU5416 (SU) group. n=9.

  • Fig. 3 hUC-MSCs inhibited apoptosis of SU5416-treated lungs. (A) Re-presentative results of TUNEL assay using lung sections chosen from each group. There was no significant difference between the Control (CON) group and the Control+MSC (CON+MSC) group. Increased TUNEL-positive cells were observed in the group treated with SU5416 (SU). hUC-MSCs reduced TUNEL-positive cells (SU+MSC). Magnification, ×400; scale bar, 50 μm. (B) Quantitative results of TUNEL assay showing apoptosis index of the four groups. Data are presented as mean±SEM. ****p<0.0001 compared with the Control (CON) group, ####p<0.0001 compared with the SU5416 (SU) group. n=3. (C) Representative results of active caspase-3 and PCNA as determined by western blotting. hUC-MSCs inhibited increased levels of active caspase-3 but not affect proliferation in the SU5416-treated models.

  • Fig. 4 hUC-MSCs rescued VEGF expression in SU5416-induced emphysema. (A) VEGF protein level in BALF was determined by ELISA. Data are presented as mean±SEM. **p<0.01 compared with the Control (CON) group, ##p<0.01 compared with the SU5416 (SU) group. n=9. (B) VEGF protein level in lungs as determined by western blotting.

  • Fig. 5 hUC-MSCs rescued the expression of p-VEGFR2 and p-AKT in emphysema induced by SU5416. The protein expressions of p-VEGFR2, VEGFR2, p-AKT and AKT in the lungs were determined by western blotting. Compared with the control group (CON), p-VEGFR2 and p-AKT in the model group (SU) were significantly reduced, but both of them in the hUC-MSCs transplantation group (SU+MSC) returned to the level of the Control group. There was no significant change in the expression of VEGFR2 and AKT in each group.

  • Fig. 6 hUC-MSCs did not alter the expression of pro-inflammatory cytokines in SU5416-induced emphysema. (A∼C) RQ-PCR detect IL-1β, IL-6 and TNFα mRNA expression in lungs, respectively. (D∼F) ELISA detect IL-1β, IL-6 and TNFα protein expression in BALF, respectively. hUC-MSCs had no significant effect on inflammatory response in normal or damaged lung tissues.


Reference

References

1. Rabe KF, Watz H. 2017; Chronic obstructive pulmonary disease. Lancet. 389:1931–1940. DOI: 10.1016/S0140-6736(17)31222-9. PMID: 28513453. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85018884308&origin=inward.
Article
2. Matthay MA, Thompson BT, Read EJ, McKenna DH Jr, Liu KD, Calfee CS, Lee JW. 2010; Therapeutic potential of mesenchymal stem cells for severe acute lung injury. Chest. 138:965–972. DOI: 10.1378/chest.10-0518. PMID: 20923800. PMCID: PMC2951759. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77957838550&origin=inward.
Article
3. O'Reilly M, Thébaud B. 2012; Cell-based strategies to reconstitute lung function in infants with severe bronchopulmonary dysplasia. Clin Perinatol. 39:703–725. DOI: 10.1016/j.clp.2012.06.009. PMID: 22954277. PMCID: PMC7112346. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84865735417&origin=inward.
4. Weiss DJ, Bertoncello I, Borok Z, Kim C, Panoskaltsis-Mortari A, Reynolds S, Rojas M, Stripp B, Warburton D, Prockop DJ. 2011; Stem cells and cell therapies in lung biology and lung diseases. Proc Am Thorac Soc. 8:223–272. DOI: 10.1513/pats.201012-071DW. PMID: 21653527. PMCID: PMC3132784. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80051755198&origin=inward.
Article
5. Gu W, Song L, Li XM, Wang D, Guo XJ, Xu WG. 2015; Mesenchymal stem cells alleviate airway inflammation and emphysema in COPD through down-regulation of cyclooxygenase-2 via p38 and ERK MAPK pathways. Sci Rep. 5:8733. DOI: 10.1038/srep08733. PMID: 25736434. PMCID: PMC4348625. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84924127186&origin=inward.
Article
6. Zhen G, Liu H, Gu N, Zhang H, Xu Y, Zhang Z. 2008; Mesenchymal stem cells transplantation protects against rat pulmonary emphysema. Front Biosci. 13:3415–3422. DOI: 10.2741/2936. PMID: 18508443. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=42649127352&origin=inward.
Article
7. Tibboel J, Keijzer R, Reiss I, de Jongste JC, Post M. 2014; Intravenous and intratracheal mesenchymal stromal cell injection in a mouse model of pulmonary emphysema. COPD. 11:310–318. DOI: 10.3109/15412555.2013.854322. PMID: 24295402. PMCID: PMC4046870. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84900811078&origin=inward.
Article
8. Bustos ML, Huleihel L, Kapetanaki MG, Lino-Cardenas CL, Mroz L, Ellis BM, McVerry BJ, Richards TJ, Kaminski N, Cerdenes N, Mora AL, Rojas M. 2014; Aging mesenchymal stem cells fail to protect because of impaired migration and antiinflammatory response. Am J Respir Crit Care Med. 189:787–798. DOI: 10.1164/rccm.201306-1043OC. PMID: 24559482. PMCID: PMC4061541. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84897403227&origin=inward.
Article
9. Nagamura-Inoue T, He H. 2014; Umbilical cord-derived mesenchymal stem cells: their advantages and potential clinical utility. World J Stem Cells. 6:195–202. DOI: 10.4252/wjsc.v6.i2.195. PMID: 24772246. PMCID: PMC3999777.
Article
10. Hao Y, Ran Y, Lu B, Li J, Zhang J, Feng C, Fang J, Ma R, Qiao Z, Dai X, Xiong W, Liu J, Zhou Q, Hao J, Li R, Dai J. 2018; Therapeutic effects of human umbilical cord-derived mesenchymal stem cells on canine radiation-induced lung injury. Int J Radiat Oncol Biol Phys. 102:407–416. Erratum in: Int J Radiat Oncol Biol Phys 2019;103:287. DOI: 10.1016/j.ijrobp.2018.10.012. PMID: 30563665. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85057876245&origin=inward.
Article
11. Moroncini G, Paolini C, Orlando F, Capelli C, Grieco A, Tonnini C, Agarbati S, Mondini E, Saccomanno S, Goteri G, Svegliati Baroni S, Provinciali M, Introna M, Del Papa N, Gabrielli A. 2018; Mesenchymal stromal cells from human umbilical cord prevent the development of lung fibrosis in immunocompetent mice. PLoS One. 13:e0196048. DOI: 10.1371/journal.pone.0196048. PMID: 29856737. PMCID: PMC5983506. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85048051579&origin=inward.
Article
12. Liu L, Mao Q, Chu S, Mounayar M, Abdi R, Fodor W, Padbury JF, De Paepe ME. 2014; Intranasal versus intraperitoneal delivery of human umbilical cord tissue-derived cultured mesenchymal stromal cells in a murine model of neonatal lung injury. Am J Pathol. 184:3344–3358. DOI: 10.1016/j.ajpath.2014.08.010. PMID: 25455688. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84913549477&origin=inward.
Article
13. Shu L, Niu C, Li R, Huang T, Wang Y, Huang M, Ji N, Zheng Y, Chen X, Shi L, Wu M, Deng K, Wei J, Wang X, Cao Y, Yan J, Feng G. 2020; Treatment of severe COVID-19 with human umbilical cord mesenchymal stem cells. Stem Cell Res Ther. 11:361. DOI: 10.1186/s13287-020-01875-5. PMID: 32811531. PMCID: PMC7432540. PMID: 6c966823e1b5408da96adf6148c7685a. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85089643262&origin=inward.
Article
14. Le Thi Bich P, Nguyen Thi H, Dang Ngo Chau H, Phan Van T, Do Q, Dong Khac H, Le Van D, Nguyen Huy L, Mai Cong K, Ta Ba T, Do Minh T, Vu Bich N, Truong Chau N, Van Pham P. 2020; Allogeneic umbilical cord-derived mesenchymal stem cell transplantation for treating chronic obstructive pulmonary disease: a pilot clinical study. Stem Cell Res Ther. 11:60. DOI: 10.1186/s13287-020-1583-4. PMID: 32054512. PMCID: PMC7020576. PMID: c3c14a9881b8478aa7765d3bf9cc9da2. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85079338721&origin=inward.
Article
15. Cho JW, Park KS, Bae JY. 2019; Effects of Wharton's jelly-derived mesenchymal stem cells on chronic obstructive pulmonary disease. Regen Ther. 11:207–211. DOI: 10.1016/j.reth.2019.07.009. PMID: 31489344. PMCID: PMC6715889. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85070979069&origin=inward.
Article
16. Ridzuan N, Zakaria N, Widera D, Sheard J, Morimoto M, Kiyokawa H, Mohd Isa SA, Chatar Singh GK, Then KY, Ooi GC, Yahaya BH. 2021; Human umbilical cord mesenchymal stem cell-derived extracellular vesicles ameliorate airway inflammation in a rat model of chronic obstructive pulmonary disease (COPD). Stem Cell Res Ther. 12:54. DOI: 10.1186/s13287-020-02088-6. PMID: 33436065. PMCID: PMC7805108. PMID: b578f88ff1d740f1ac709eb36548bdc2. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85099226302&origin=inward.
Article
17. Kasahara Y, Tuder RM, Taraseviciene-Stewart L, Le Cras TD, Abman S, Hirth PK, Waltenberger J, Voelkel NF. 2000; Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest. 106:1311–1319. DOI: 10.1172/JCI10259. PMID: 11104784. PMCID: PMC387249. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0033660171&origin=inward.
Article
18. Zhang Z, Wang J, Liu F, Yuan L, Ding M, Chen L, Yuan J, Yang K, Qian J, Lu W. 2019; Non-inflammatory emphysema induced by NO2 chronic exposure and intervention with demethylation 5-Azacytidine. Life Sci. 221:121–129. DOI: 10.1016/j.lfs.2019.02.022. PMID: 30763575.
Article
19. Aoshiba K, Yokohori N, Nagai A. 2003; Alveolar wall apoptosis causes lung destruction and emphysematous changes. Am J Respir Cell Mol Biol. 28:555–562. DOI: 10.1165/rcmb.2002-0090OC. PMID: 12707011. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0038070219&origin=inward.
Article
20. Petrache I, Natarajan V, Zhen L, Medler TR, Richter AT, Cho C, Hubbard WC, Berdyshev EV, Tuder RM. 2005; Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nat Med. 11:491–498. DOI: 10.1038/nm1238. PMID: 15852018. PMCID: PMC1352344. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=18844434417&origin=inward.
Article
21. Amable PR, Teixeira MV, Carias RB, Granjeiro JM, Borojevic R. 2014; Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton's jelly. Stem Cell Res Ther. 5:53. DOI: 10.1186/scrt442. PMID: 24739658. PMCID: PMC4055160. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84901016324&origin=inward.
Article
22. Li X, Bai J, Ji X, Li R, Xuan Y, Wang Y. 2014; Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation. Int J Mol Med. 34:695–704. DOI: 10.3892/ijmm.2014.1821. PMID: 24970492. PMCID: PMC4121354. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84904959350&origin=inward.
Article
23. Prasanna SJ, Gopalakrishnan D, Shankar SR, Vasandan AB. 2010; Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS One. 5:e9016. DOI: 10.1371/journal.pone.0009016. PMID: 20126406. PMCID: PMC2814860. PMID: 6be6609486ed4704b60db7fb7f9cad93. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77949308137&origin=inward.
24. Bárcia RN, Santos JM, Filipe M, Teixeira M, Martins JP, Almeida J, Água-Doce A, Almeida SC, Varela A, Pohl S, Dittmar KE, Calado S, Simões SI, Gaspar MM, Cruz ME, Lindenmaier W, Graça L, Cruz H, Cruz PE. 2015; What makes umbilical cord tissue-derived mesenchymal stromal cells superior immunomodulators when compared to bone marrow derived mesenchymal stromal cells? Stem Cells Int. 2015:583984. DOI: 10.1155/2015/583984. PMID: 26064137. PMCID: PMC4443932. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84930686279&origin=inward.
Article
25. Kasahara Y, Tuder RM, Cool CD, Lynch DA, Flores SC, Voelkel NF. 2001; Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema. Am J Respir Crit Care Med. 163(3 Pt 1):737–744. DOI: 10.1164/ajrccm.163.3.2002117. PMID: 11254533. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0035077330&origin=inward.
Article
26. Demedts IK, Demoor T, Bracke KR, Joos GF, Brusselle GG. 2006; Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir Res. 7:53. DOI: 10.1186/1465-9921-7-53. PMID: 16571143. PMCID: PMC1501017. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33745905620&origin=inward.
Article
27. Ferrara N. 2000; VEGF: an update on biological and therapeutic aspects. Curr Opin Biotechnol. 11:617–624. DOI: 10.1016/S0958-1669(00)00153-1. PMID: 11102799. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0033636357&origin=inward.
Article
28. Kanazawa H, Asai K, Hirata K, Yoshikawa J. 2003; Possible effects of vascular endothelial growth factor in the pathogenesis of chronic obstructive pulmonary disease. Am J Med. 114:354–358. DOI: 10.1016/S0002-9343(02)01562-0. PMID: 12714123. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0037398983&origin=inward.
Article
29. Tang K, Rossiter HB, Wagner PD, Breen EC. 2004; Lung-targeted VEGF inactivation leads to an emphysema phenotype in mice. J Appl Physiol (1985). 97:1559–1566. discussion 1549DOI: 10.1152/japplphysiol.00221.2004. PMID: 15208295. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=4644296747&origin=inward.
Article
30. Takahashi Y, Izumi Y, Kohno M, Ikeda E, Nomori H. 2013; Airway administration of vascular endothelial growth factor siRNAs induces transient airspace enlargement in mice. Int J Med Sci. 10:1702–1714. DOI: 10.7150/ijms.7114. PMID: 24155658. PMCID: PMC3805924. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84884969887&origin=inward.
Article
31. Gerber HP, Dixit V, Ferrara N. 1998; Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem. 273:13313–13316. DOI: 10.1074/jbc.273.21.13313. PMID: 9582377. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0032557564&origin=inward.
Article
32. Gupta K, Kshirsagar S, Li W, Gui L, Ramakrishnan S, Gupta P, Law PY, Hebbel RP. 1999; VEGF prevents apoptosis of human microvascular endothelial cells via opposing effects on MAPK/ERK and SAPK/JNK signaling. Exp Cell Res. 247:495–504. DOI: 10.1006/excr.1998.4359. PMID: 10066377. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0033558798&origin=inward.
Article
33. Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V, Ferrara N. 1998; Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Require-ment for Flk-1/KDR activation. J Biol Chem. 273:30336–30343. DOI: 10.1074/jbc.273.46.30336. PMID: 9804796.
Article
34. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC. 1998; Regulation of cell death protease caspase-9 by phosphorylation. Science. 282:1318–1321. DOI: 10.1126/science.282.5392.1318. PMID: 9812896. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0032515027&origin=inward.
Article
35. del Peso L, González-García M, Page C, Herrera R, Nuñez G. 1997; Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science. 278:687–689. DOI: 10.1126/science.278.5338.687. PMID: 9381178. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=1842333237&origin=inward.
Article
36. Shiojima I, Walsh K. 2002; Role of Akt signaling in vascular homeostasis and angiogenesis. Circ Res. 90:1243–1250. DOI: 10.1161/01.RES.0000022200.71892.9F. PMID: 12089061. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0037188941&origin=inward.
Article
37. Prakash Muyal J, Kumar D, Kotnala S, Muyal V, Kumar Tyagi A. 2015; Recombinant human keratinocyte growth factor induces Akt mediated cell survival progression in emphysematous mice. Arch Bronconeumol. 51:328–337. DOI: 10.1016/j.arbres.2014.04.019. PMID: 25017817.
Article
38. Giordano RJ, Lahdenranta J, Zhen L, Chukwueke U, Petrache I, Langley RR, Fidler IJ, Pasqualini R, Tuder RM, Arap W. 2008; Targeted induction of lung endothelial cell apoptosis causes emphysema-like changes in the mouse. J Biol Chem. 283:29447–29460. DOI: 10.1074/jbc.M804595200. PMID: 18718906. PMCID: PMC2570855. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=57649221004&origin=inward.
Article
39. Petrache I, Fijalkowska I, Zhen L, Medler TR, Brown E, Cruz P, Choe KH, Taraseviciene-Stewart L, Scerbavicius R, Shapiro L, Zhang B, Song S, Hicklin D, Voelkel NF, Flotte T, Tuder RM. 2006; A novel antiapoptotic role for alpha1-antitrypsin in the prevention of pulmonary emphysema. Am J Respir Crit Care Med. 173:1222–1228. DOI: 10.1164/rccm.200512-1842OC. PMID: 16514110. PMCID: PMC2662968. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33744945064&origin=inward.
Article
40. Shen BQ, Lee DY, Gerber HP, Keyt BA, Ferrara N, Zioncheck TF. 1998; Homologous up-regulation of KDR/Flk-1 receptor expression by vascular endothelial growth factor in vitro. J Biol Chem. 273:29979–29985. DOI: 10.1074/jbc.273.45.29979. PMID: 9792718. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0032491429&origin=inward.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr