Korean J Pain.  2020 Apr;33(2):131-137. 10.3344/kjp.2020.33.2.131.

Increased calcium-mediated cerebral processes after peripheral injury: possible role of the brain in complex regional pain syndrome

Affiliations
  • 1Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
  • 2Department of Anesthesiology and Pain Medicine, College of Medicine, Seoul National University, Seoul, Korea
  • 3Department of Veterinary Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Korea

Abstract

Background
Among various diseases that accompany pain, complex regional pain syndrome (CRPS) is one of the most frustrating for patients and physicians. Recently, many studies have shown functional and anatomical abnormalities in the brains of patients with CRPS. The calcium-related signaling pathway is important in various physiologic processes via calmodulin (CaM) and calcium-calmodulin kinase 2 (CaMK2). To investigate the cerebral mechanism of CRPS, we measured changes in CaM and CaMK2 expression in the cerebrum in CRPS animal models.
Methods
The chronic post-ischemia pain model was employed for CRPS model generation. After generation of the animal models, the animals were categorized into three groups based on changes in the withdrawal threshold for the affected limb: CRPS-positive (P), CRPS-negative (N), and control (C) groups. Western blot analysis was performed to measure CaM and CaMK2 expression in the rat cerebrum.
Results
Animals with a decreased withdrawal threshold (group P) showed a significant increment in cerebral CaM and CaMK2 expression (P = 0.013 and P = 0.021, respectively). However, groups N and C showed no difference in CaM and CaMK2 expression.
Conclusions
The calcium-mediated cerebral process occurs after peripheral injury in CRPS, and there can be a relationship between the cerebrum and the pathogenesis of CRPS.

Keyword

Blotting, Western; Brain; Calcium-Calmodulin-Dependent Protein Kinases; Calmodulin; Cerebrum; Complex Regional Pain Syndromes; Pain; Rats

Figure

  • Fig. 1 The WT after CRPS model generation. The WT was measured at 1 hr, 4 hr, 1 day, 2 days, 7 days, and 21 days after the CPIP procedure. Rats in group P showed a significant difference in WT in comparison to those in groups N and C (n = 7 rats per group, P < 0.01). Groups P, N, and C indicate the CRPS-positive (ΔWT ≥ 50%), CRPS-negative (ΔWT < 50%), and control groups, respectively. WT: withdrawal threshold, CRPS: complex regional pain syndrome, CPIP: chronic post-ischemia perfusion. *P < 0.05.

  • Fig. 2 Expression of cerebral calcium-calmodulin (CaM). A significant increase in the cerebral CaM level was found in group P in comparison to in groups N and C (n = 4 rats per group, P = 0.013). Error bars indicate standard errors. Groups P, N, and C indicate the CRPS-positive (ΔWT ≥ 50%), CRPS-negative (ΔWT < 50%), and control groups, respectively. *P < 0.05.

  • Fig. 3 Expression of cerebral calcium-calmodulin kinase 2 (CaMK2). A significant increase in the cerebral CaMK2 level was found in group P compared to in groups N and C (n = 4 rats per group, P = 0.021). Error bars indicate standard errors. Groups P, N, and C indicate the CRPS-positive (ΔWT ≥ 50%), CRPS-negative (ΔWT < 50%), and control groups, respectively. *P < 0.05.


Reference

1. Stanton-Hicks M, Baron R, Boas R, Gordh T, Harden N, Hendler N, et al. 1998; Complex regional pain syndromes: guidelines for therapy. Clin J Pain. 14:155–66. DOI: 10.1097/00002508-199806000-00012. PMID: 9647459.
Article
2. Moseley GL. 2005; Distorted body image in complex regional pain syndrome. Neurology. 65:773. DOI: 10.1212/01.wnl.0000174515.07205.11. PMID: 16157921.
Article
3. Moseley GL, Zalucki N, Birklein F, Marinus J, van Hilten JJ, Luomajoki H. 2008; Thinking about movement hurts: the effect of motor imagery on pain and swelling in people with chronic arm pain. Arthritis Rheum. 59:623–31. DOI: 10.1002/art.23580. PMID: 18438892.
Article
4. Acerra NE, Moseley GL. 2005; Dysynchiria: watching the mirror image of the unaffected limb elicits pain on the affected side. Neurology. 65:751–3. DOI: 10.1212/01.wnl.0000178745.11996.8c. PMID: 16157911.
Article
5. Geha PY, Baliki MN, Harden RN, Bauer WR, Parrish TB, Apkarian AV. 2008; The brain in chronic CRPS pain: abnormal gray-white matter interactions in emotional and autonomic regions. Neuron. 60:570–81. DOI: 10.1016/j.neuron.2008.08.022. PMID: 19038215. PMCID: PMC2637446.
Article
6. Freund W, Wunderlich AP, Stuber G, Mayer F, Steffen P, Mentzel M, et al. 2010; Different activation of opercular and posterior cingulate cortex (PCC) in patients with complex regional pain syndrome (CRPS I) compared with healthy controls during perception of electrically induced pain: a functional MRI study. Clin J Pain. 26:339–47. DOI: 10.1097/AJP.0b013e3181cb4055. PMID: 20393270.
Article
7. Jänig W, Baron R. 2002; Complex regional pain syndrome is a disease of the central nervous system. Clin Auton Res. 12:150–64. DOI: 10.1007/s10286-002-0022-1. PMID: 12269546.
Article
8. Lee WH. 2015; Complex regional pain syndrome: time to study the supraspinal role? Korean J Pain. 28:1–3. DOI: 10.3344/kjp.2015.28.1.1. PMID: 25589940. PMCID: PMC4293501.
Article
9. Mogilevsky M, Jänig W, Baron R, Harden RN. 2007; Complex regional pain syndrome-a multifaceted disorder requiring multidimensional care: case study. J Pain. 8:677–81. DOI: 10.1016/j.jpain.2007.05.009. PMID: 17652030.
Article
10. Smart KM, Wand BM, O’Connell NE. 2016; Physiotherapy for pain and disability in adults with complex regional pain syndrome (CRPS) types I and II. Cochrane Database Syst Rev. 2:CD010853. DOI: 10.1002/14651858.CD010853.pub2. PMID: 26905470.
Article
11. Choi J, Husain M. 2006; Calmodulin-mediated cell cycle regulation: new mechanisms for old observations. Cell Cycle. 5:2183–6. DOI: 10.4161/cc.5.19.3265. PMID: 16969097.
Article
12. Ataei N, Sabzghabaee AM, Movahedian A. 2015; Calcium/calmodulin-dependent protein kinase II is a ubiquitous molecule in human long-term memory synaptic plasticity: a systematic review. Int J Prev Med. 6:88. DOI: 10.4103/2008-7802.164831. PMID: 26445635. PMCID: PMC4587077.
Article
13. Cheung WY. 1980; Calmodulin plays a pivotal role in cellular regulation. Science. 207:19–27. DOI: 10.1126/science.6243188. PMID: 6243188.
Article
14. Strack S, Colbran RJ. 1998; Autophosphorylation-dependent targeting of calcium/ calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl- D-aspartate receptor. J Biol Chem. 273:20689–92. DOI: 10.1074/jbc.273.33.20689. PMID: 9694809.
15. Aurilio C, Pota V, Pace MC, Passavanti MB, Barbarisi M. 2008; Ionic channels and neuropathic pain: physiopathology and applications. J Cell Physiol. 215:8–14. DOI: 10.1002/jcp.21280. PMID: 18205177.
16. Marinus J, Moseley GL, Birklein F, Baron R, Maihöfner C, Kingery WS, et al. 2011; Clinical features and pathophysiology of complex regional pain syndrome. Lancet Neurol. 10:637–48. DOI: 10.1016/S1474-4422(11)70106-5. PMID: 21683929. PMCID: PMC5511749.
Article
17. Yamauchi T. 2005; Neuronal Ca2+/calmodulin-dependent protein kinase II--discovery, progress in a quarter of a century, and perspective: implication for learning and memory. Biol Pharm Bull. 28:1342–54. DOI: 10.1248/bpb.28.1342. PMID: 16079472.
Article
18. Crown ED, Gwak YS, Ye Z, Yu Tan H, Johnson KM, Xu GY, et al. 2012; Calcium/calmodulin dependent kinase II contributes to persistent central neuropathic pain following spinal cord injury. Pain. 153:710–21. DOI: 10.1016/j.pain.2011.12.013. PMID: 22296735. PMCID: PMC3367863.
Article
19. Garry EM, Moss A, Delaney A, O’Neill F, Blakemore J, Bowen J, et al. 2003; Neuropathic sensitization of behavioral reflexes and spinal NMDA receptor/CaM kinase II interactions are disrupted in PSD-95 mutant mice. Curr Biol. 13:321–8. DOI: 10.1016/S0960-9822(03)00084-8. PMID: 12593798.
Article
20. Fang L, Wu J, Lin Q, Willis WD. 2002; Calcium-calmodulin-dependent protein kinase II contributes to spinal cord central sensitization. J Neurosci. 22:4196–204. DOI: 10.1523/JNEUROSCI.22-10-04196.2002. PMID: 12019337. PMCID: PMC6757653.
Article
21. Coderre TJ, Xanthos DN, Francis L, Bennett GJ. 2004; Chronic post-ischemia pain (CPIP): a novel animal model of complex regional pain syndrome-type I (CRPS-I; reflex sympathetic dystrophy) produced by prolonged hindpaw ischemia and reperfusion in the rat. Pain. 112:94–105. DOI: 10.1016/j.pain.2004.08.001. PMID: 15494189.
Article
22. Ryu TH, Jung KY, Ha MJ, Kwak KH, Lim DG, Hong JG. 2010; Superoxide and nitric oxide involvement in enhancing of N-methyl-D-aspartate receptor-mediated central sensitization in the chronic post-ischemia pain model. Korean J Pain. 23:1–10. DOI: 10.3344/kjp.2010.23.1.1. PMID: 20552066. PMCID: PMC2884210.
Article
23. Nam JS, Cheong YS, Karm MH, Ahn HS, Sim JH, Kim JS, et al. 2014; Effects of nefopam on streptozotocin-induced diabetic neuropathic pain in rats. Korean J Pain. 27:326–33. DOI: 10.3344/kjp.2014.27.4.326. PMID: 25317281. PMCID: PMC4196497.
Article
24. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. 1994; Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 53:55–63. DOI: 10.1016/0165-0270(94)90144-9. PMID: 7990513.
Article
25. de Mos M, Laferrière A, Millecamps M, Pilkington M, Sturkenboom MC, Huygen FJ, et al. 2009; Role of NFkappaB in an animal model of complex regional pain syndrome-type I (CRPS-I). J Pain. 10:1161–9. DOI: 10.1016/j.jpain.2009.04.012. PMID: 19878863. PMCID: PMC4531089.
26. Nahm FS, Park ZY, Nahm SS, Kim YC, Lee PB. 2014; Proteomic identification of altered cerebral proteins in the complex regional pain syndrome animal model. Biomed Res Int. 2014:498410. DOI: 10.1155/2014/498410. PMID: 25313364. PMCID: PMC4182003.
Article
27. Nahm FS, Nahm SS, Han WK, Gil HY, Choi E, Lee PB. 2019; Increased cerebral nuclear factor kappa B in a complex regional pain syndrome rat model: possible relationship between peripheral injury and the brain. J Pain Res. 12:909–14. DOI: 10.2147/JPR.S166270. PMID: 30881100. PMCID: PMC6408925.
28. Liu Q, Chen B, Ge Q, Wang ZW. 2007; Presynaptic Ca2+/calmodulin-dependent protein kinase II modulates neurotransmitter release by activating BK channels at Caenorhabditis elegans neuromuscular junction. J Neurosci. 27:10404–13. DOI: 10.1523/JNEUROSCI.5634-06.2007. PMID: 17898212. PMCID: PMC6673169.
Article
29. Maier LS. 2011; CaMKII regulation of voltage-gated sodium channels and cell excitability. Heart Rhythm. 8:474–7. DOI: 10.1016/j.hrthm.2010.09.080. PMID: 20887805.
Article
30. Lisman J, Yasuda R, Raghavachari S. 2012; Mechanisms of CaMKII action in long-term potentiation. Nat Rev Neurosci. 13:169–82. DOI: 10.1038/nrn3192. PMID: 22334212. PMCID: PMC4050655.
Article
31. Ji RR, Kohno T, Moore KA, Woolf CJ. 2003; Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci. 26:696–705. DOI: 10.1016/j.tins.2003.09.017. PMID: 14624855.
Article
32. Sandkühler J, Gruber-Schoffnegger D. 2012; Hyperalgesia by synaptic long-term potentiation (LTP): an update. Curr Opin Pharmacol. 12:18–27. DOI: 10.1016/j.coph.2011.10.018. PMID: 22078436. PMCID: PMC3315008.
Article
33. Chen Y, Luo F, Yang C, Kirkmire CM, Wang ZJ. 2009; Acute inhibition of Ca2+/calmodulin-dependent protein kinase II reverses experimental neuropathic pain in mice. J Pharmacol Exp Ther. 330:650–9. DOI: 10.1124/jpet.109.152165. PMID: 19478130. PMCID: PMC2713096.
Article
34. Balshaw DM, Yamaguchi N, Meissner G. 2002; Modulation of intracellular calcium-release channels by calmodulin. J Membr Biol. 185:1–8. DOI: 10.1007/s00232-001-0111-4. PMID: 11891559.
Article
35. Seales EC, Micoli KJ, McDonald JM. 2006; Calmodulin is a critical regulator of osteoclastic differentiation, function, and survival. J Cell Biochem. 97:45–55. DOI: 10.1002/jcb.20659. PMID: 16216008.
Article
36. Solà C, Barrón S, Tusell JM, Serratosa J. 2001; The Ca2+/calmodulin system in neuronal hyperexcitability. Int J Biochem Cell Biol. 33:439–55. DOI: 10.1016/S1357-2725(01)00030-9. PMID: 11331200.
Article
37. Li L, Sacks DB. 2007; Functional interactions between calmodulin and estrogen receptor-alpha. Cell Signal. 19:439–43. DOI: 10.1016/j.cellsig.2006.08.018. PMID: 17070670.
38. Oláh Z, Jósvay K, Pecze L, Letoha T, Babai N, Budai D, et al. 2007; Anti-calmodulins and tricyclic adjuvants in pain therapy block the TRPV1 channel. PLoS One. 2:e545. DOI: 10.1371/journal.pone.0000545. PMID: 17579717. PMCID: PMC1890308.
Article
39. Lisman JE. 1985; A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylating kinase. Proc Natl Acad Sci U S A. 82:3055–7. DOI: 10.1073/pnas.82.9.3055. PMID: 2986148. PMCID: PMC397705.
Article
40. Lonze BE, Ginty DD. 2002; Function and regulation of CREB family transcription factors in the nervous system. Neuron. 35:605–23. DOI: 10.1016/S0896-6273(02)00828-0. PMID: 12194863.
Article
41. Hardingham GE, Fukunaga Y, Bading H. 2002; Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci. 5:405–14. DOI: 10.1038/nn835. PMID: 11953750.
Article
42. Cui Y, Xia T, Chu S, Qian Y, Zhang J, Song J, et al. 2016; The role of Ca2+/calmodulin-dependent protein kinase II-cyclic AMP-responsive element binding protein signaling pathway on sensory-discriminative and affective-motivational pain responses in a rat model of chronic constriction injury of sciatic nerve. Int J Clin Exp Med. 9:10181–90.
43. Di Pietro F, McAuley JH, Parkitny L, Lotze M, Wand BM, Moseley GL, et al. 2013; Primary somatosensory cortex function in complex regional pain syndrome: a systematic review and meta-analysis. J Pain. 14:1001–18. DOI: 10.1016/j.jpain.2013.04.001. PMID: 23726046.
Article
Full Text Links
  • KJP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr