Allergy Asthma Immunol Res.  2020 Mar;12(2):176-237. 10.4168/aair.2020.12.2.176.

Chinese Society of Allergy and Chinese Society of Otorhinolaryngology-Head and Neck Surgery Guideline for Chronic Rhinosinusitis

Affiliations
  • 1Department of Otolaryngology Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  • 2Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  • 3Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China.
  • 4International Centre for Allergy Research, Nanjing Medical University, Nanjing, China.
  • 5Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China.
  • 6Department of Otolaryngology, West China Hospital, Sichuan University, Chengdu, China.
  • 7Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China. dr.luozhang@139.com, entzhou@263.net
  • 8Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.
  • 9Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
  • 10Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
  • 11Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
  • 12Otorhinolaryngology Hospital, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
  • 13Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China.
  • 14Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
  • 15Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
  • 16Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Shanxi Medical University, Taiyuan, China.
  • 17Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
  • 18Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, China.

Abstract

The current document is based on a consensus reached by a panel of experts from the Chinese Society of Allergy and the Chinese Society of Otorhinolaryngology-Head and Neck Surgery, Rhinology Group. Chronic rhinosinusitis (CRS) affects approximately 8% of Chinese adults. The inflammatory and remodeling mechanisms of CRS in the Chinese population differ from those observed in the populations of European descent. Recently, precision medicine has been used to treat inflammation by targeting key biomarkers that are involved in the process. However, there are no CRS guidelines or a consensus available from China that can be shared with the international academia. The guidelines presented in this paper cover the epidemiology, economic burden, genetics and epigenetics, mechanisms, phenotypes and endotypes, diagnosis and differential diagnosis, management, and the current status of CRS in China. These guidelines"”with a focus on China"”will improve the abilities of clinical and medical staff during the treatment of CRS. Additionally, they will help international agencies in improving the verification of CRS endotypes, mapping of eosinophilic shifts, the identification of suitable biomarkers for endotyping, and predicting responses to therapies. In conclusion, these guidelines will help select therapies, such as pharmacotherapy, surgical approaches and innovative biotherapeutics, which are tailored to each of the individual CRS endotypes.

Keyword

Chronic, sinusitis; China; guideline; inflammation; biomarkers; epigenesis; phenotype; endotypes; diagnosis; management

MeSH Terms

Adult
Asian Continental Ancestry Group*
Biomarkers
China
Consensus
Diagnosis
Diagnosis, Differential
Drug Therapy
Eosinophils
Epidemiology
Epigenomics
Genetics
Humans
Hypersensitivity*
Inflammation
International Agencies
Medical Staff
Neck*
Phenotype
Precision Medicine
Biomarkers

Figure

  • Fig. 1 Potential mechanisms of immune cells and mediators involved in the pathogenesis of airway diseases. IL, interleukin; DC, dendritic cell; TSLP, thymic stromal lymphopoietin; BAFF, B-cell activating factor; Ig, immunoglobulin; Th, T helper; CCL23, chemokine (C-C motif) ligand 23; CRSsNP, chronic rhinosinusitis without nasal polyps; CRSwNP, chronic rhinosinusitis with nasal polyps.

  • Fig. 2 Representative hematoxylin and eosin staining of nasal polyps in 5 inflammatory phenotypes (400× magnification). (A) Cluster 1, the plasma cell-dominant group. (B) Cluster 2, the lymphocyte-dominant group. (C) Cluster 3, the mixed group. (D) Cluster 4, the neutrophil-dominant group. (E) Cluster 5, the eosinophil-dominant group. Plasma cell, green arrow; lymphocyte, black arrow; neutrophil, blue arrow; eosinophil, red arrow.

  • Fig. 3 Endoscopic view of an uncinectomy. (A) An incision was made with a sickle knife or elevator, along the anterior margin of the UP. (B) The EB was exposed after the removal of the UP, and natural ostium maxillary sinus (↑) can be observed. NS, nasal septum; MT, middle turbinate; UP, uncinate process; EB, ethmoidal bulla. *Upper attachment of UP.

  • Fig. 4 Endoscopic view of ethmoidectomy (cadaver dissection). PE, posterior ethmoidal sinus; ST, superior turbinate; MT, middle turbinate. *The bottoms of adjacent ethmoidal cells at the same level indicate lamina papyracea.

  • Fig. 5 Endoscopic image of the cadaver shows that: (A) After partial superior turbinectomy, the ostium of the SS (↑), located medially to the remnant ST (△△△), was well exposed; (B) the SS was opened by a Kerrison punch. ST, superior turbinate; SS, sphenoidal sinus; PE, posterior ethmoidal sinus. *Lamina papyracea.

  • Fig. 6 Postoperative endoscopy and images demonstrate Draf type frontal sinus surgeries: Draf I, II (a, b) and III. FS (↑). FS, frontal sinus.

  • Fig. 7 Postoperative endoscopy. Well-epithelized nasal cavity after nasalization using the Draf III procedure. (A), endoscopic view of bilateral frontal sinuses and ethmoid sinuses. (B), endoscopic view of left ethmoid sinus, sphenoid sinus and maxillary sinus. FS, frontal sinus; ES, ethmoidal sinus; SS, sphenoidal sinus; MS, maxillary sinus, NS, nasal septum. *Middle turbinate.

  • Fig. 8 Representative images of a preoperative computed tomographic scan (A, B) and 4-year postoperative endoscopic views of the sinuses (C, right nasal cavity; D, left nasal cavity) from a patient with chronic rhinosinusitis and asthma.


Reference

1. Rudmik L, Smith TL. Quality of life in patients with chronic rhinosinusitis. Curr Allergy Asthma Rep. 2011; 11:247–252.
Article
2. Bhattacharyya N, Orlandi RR, Grebner J, Martinson M. Cost burden of chronic rhinosinusitis: a claims-based study. Otolaryngol Head Neck Surg. 2011; 144:440–445.
3. Rudmik L, Smith TL, Schlosser RJ, Hwang PH, Mace JC, Soler ZM. Productivity costs in patients with refractory chronic rhinosinusitis. Laryngoscope. 2014; 124:2007–2012.
Article
4. Lee TJ, Fu CH, Wang CH, Huang CC, Huang CC, Chang PH, et al. Impact of chronic rhinosinusitis on severe asthma patients. PLoS One. 2017; 12:e0171047.
Article
5. Tomassen P, Vandeplas G, Van Zele T, Cardell LO, Arebro J, Olze H, et al. Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J Allergy Clin Immunol. 2016; 137:1449–1456.e4.
Article
6. Fokkens WJ, Lund VJ, Mullol J, Bachert C, Alobid I, Baroody F, et al. European position paper on rhinosinusitis and nasal polyps 2012. Rhinol Suppl. 2012; 23:3 p preceding table of contents1–298.
7. Meltzer EO, Hamilos DL, Hadley JA, Lanza DC, Marple BF, Nicklas RA, et al. Rhinosinusitis: establishing definitions for clinical research and patient care. Otolaryngol Head Neck Surg. 2004; 131:S1–S62.
Article
8. Beule A. Epidemiology of chronic rhinosinusitis, selected risk factors, comorbidities, and economic burden. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2015; 14:Doc11.
9. Dietz de Loos DA, Hopkins C, Fokkens WJ. Symptoms in chronic rhinosinusitis with and without nasal polyps. Laryngoscope. 2013; 123:57–63.
Article
10. Hastan D, Fokkens WJ, Bachert C, Newson RB, Bislimovska J, Bockelbrink A, et al. Chronic rhinosinusitis in Europe--an underestimated disease. A GA2LEN study. Allergy. 2011; 66:1216–1223.
11. Pleis JR, Coles R. Summary health statistics for U.S. adults: National Health Interview Survey, 1998. Vital Health Stat 10. 2002; 1–113.
Article
12. Pilan RR, Pinna FR, Bezerra TF, Mori RL, Padua FG, Bento RF, et al. Prevalence of chronic rhinosinusitis in Sao Paulo. Rhinology. 2012; 50:129–138.
Article
13. Kim JH, Cho C, Lee EJ, Suh YS, Choi BI, Kim KS. Prevalence and risk factors of chronic rhinosinusitis in South Korea according to diagnostic criteria. Rhinology. 2016; 54:329–335.
Article
14. Chen Y, Dales R, Lin M. The epidemiology of chronic rhinosinusitis in Canadians. Laryngoscope. 2003; 113:1199–1205.
Article
15. Blackwell DL, Lucas JW, Clarke TC. Summary health statistics for U.S. adults: national health interview survey, 2012. Vital Health Stat 10. 2014; 1–161.
16. Anand VK. Epidemiology and economic impact of rhinosinusitis. Ann Otol Rhinol Laryngol Suppl. 2004; 193:3–5.
Article
17. Shi JB, Fu QL, Zhang H, Cheng L, Wang YJ, Zhu DD, et al. Epidemiology of chronic rhinosinusitis: results from a cross-sectional survey in seven Chinese cities. Allergy. 2015; 70:533–539.
18. Shah A. Allergic rhinitis, chronic rhinosinusitis and nasal polyposis in Asia Pacific: impact on quality of life and sleep. Asia Pac Allergy. 2014; 4:131–133.
Article
19. Lange B, Holst R, Thilsing T, Baelum J, Kjeldsen A. Quality of life and associated factors in persons with chronic rhinosinusitis in the general population: a prospective questionnaire and clinical cross-sectional study. Clin Otolaryngol. 2013; 38:474–480.
Article
20. Kim JY, Ko I, Kim MS, Yu MS, Cho BJ, Kim DK. Association of chronic rhinosinusitis with depression and anxiety in a nationwide insurance population. JAMA Otolaryngol Head Neck Surg. 2019; 145:313–319.
Article
21. Schalek P, Otruba L, Hahn A. Quality of life in patients with chronic rhinosinusitis: a validation of the Czech version of SNOT-22 questionnaire. Eur Arch Otorhinolaryngol. 2010; 267:473–475.
Article
22. Fu QL, Ma JX, Ou CQ, Guo C, Shen SQ, Xu G, et al. Influence of self-reported chronic rhinosinusitis on health-related quality of life: a population-based survey. PLoS One. 2015; 10:e0126881.
Article
23. Ragab SM, Lund VJ, Scadding G, Saleh HA, Khalifa MA. Impact of chronic rhinosinusitis therapy on quality of life: a prospective randomized controlled trial. Rhinology. 2010; 48:305–311.
Article
24. Yii ACA, Tay TR, Choo XN, Koh MSY, Tee AKH, Wang DY. Precision medicine in united airways disease: a "treatable traits" approach. Allergy. 2018; 73:1964–1978.
Article
25. Jarvis D, Newson R, Lotvall J, Hastan D, Tomassen P, Keil T, et al. Asthma in adults and its association with chronic rhinosinusitis: the GA2LEN survey in Europe. Allergy. 2012; 67:91–98.
Article
26. Fan Y, Chen S, Qu X, Zuo K, Li X, Huang J, et al. A lower prevalence of asthma among patients with chronic rhinosinusitis in southern China. J Allergy Clin Immunol. 2011; 127:520–522.e1-5.
Article
27. Rix I, Håkansson K, Larsen CG, Frendø M, von Buchwald C. Management of chronic rhinosinusitis with nasal polyps and coexisting asthma: a systematic review. Am J Rhinol Allergy. 2015; 29:193–201.
Article
28. Wynn R, Har-El G. Recurrence rates after endoscopic sinus surgery for massive sinus polyposis. Laryngoscope. 2004; 114:811–813.
Article
29. Klossek JM, Neukirch F, Pribil C, Jankowski R, Serrano E, Chanal I, et al. Prevalence of nasal polyposis in France: a cross-sectional, case-control study. Allergy. 2005; 60:233–237.
Article
30. Jani AL, Hamilos DL. Current thinking on the relationship between rhinosinusitis and asthma. J Asthma. 2005; 42:1–7.
Article
31. Wu D, Bleier BS, Li L, Zhan X, Zhang L, Lv Q, et al. Clinical phenotypes of nasal polyps and comorbid asthma based on cluster analysis of disease history. J Allergy Clin Immunol Pract. 2018; 6:1297–1305.e1.
Article
32. Kennedy JL, Stoner AN, Borish L. Aspirin-exacerbated respiratory disease: Prevalence, diagnosis, treatment, and considerations for the future. Am J Rhinol Allergy. 2016; 30:407–413.
Article
33. Levy JM, Smith TL. Is aspirin desensitization indicated for the treatment recalcitrant chronic rhinosinusitis with nasal polyposis in aspirin-exacerbated respiratory disease? Laryngoscope. 2017; 127:776–777.
Article
34. Tajudeen BA, Schwartz JS, Bosso JV. The role of aspirin desensitization in the management of aspirin-exacerbated respiratory disease. Curr Opin Otolaryngol Head Neck Surg. 2017; 25:30–34.
Article
35. Mfuna-Endam L, Zhang Y, Desrosiers MY. Genetics of rhinosinusitis. Curr Allergy Asthma Rep. 2011; 11:236–246.
Article
36. Hsu J, Avila PC, Kern RC, Hayes MG, Schleimer RP, Pinto JM. Genetics of chronic rhinosinusitis: state of the field and directions forward. J Allergy Clin Immunol. 2013; 131:977–993. 993.e1–993.e5.
Article
37. Orb Q, Curtin K, Oakley GM, Wong J, Meier J, Orlandi RR, et al. Familial risk of pediatric chronic rhinosinusitis. Laryngoscope. 2016; 126:739–745.
Article
38. Cohen NA, Widelitz JS, Chiu AG, Palmer JN, Kennedy DW. Familial aggregation of sinonasal polyps correlates with severity of disease. Otolaryngol Head Neck Surg. 2006; 134:601–604.
Article
39. Delagrand A, Gilbert-Dussardier B, Burg S, Allano G, Gohler-Desmonts C, Lebreton JP, et al. Nasal polyposis: is there an inheritance pattern? A single family study. Rhinology. 2008; 46:125–130.
40. Qu SH, Li TY, Li M, Shi JB, Wen WP, Wen WH. Genetic epidemiologic study on nasal polyps. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2007; 42:608–611.
41. Lockey RF, Rucknagel DL, Vanselow NA. Familial occurrence of asthma, nasal polyps and aspirin intolerance. Ann Intern Med. 1973; 78:57–63.
Article
42. Wang X, Moylan B, Leopold DA, Kim J, Rubenstein RC, Togias A, et al. Mutation in the gene responsible for cystic fibrosis and predisposition to chronic rhinosinusitis in the general population. JAMA. 2000; 284:1814–1819.
Article
43. Shi LL, Song J, Xiong P, Cao PP, Liao B, Ma J, et al. Disease-specific T-helper cell polarizing function of lesional dendritic cells in different types of chronic rhinosinusitis with nasal polyps. Am J Respir Crit Care Med. 2014; 190:628–638.
Article
44. Yoo F, Suh JD. What is the evidence for genetics in chronic rhinosinusitis? Curr Opin Otolaryngol Head Neck Surg. 2017; 25:54–63.
Article
45. Karjalainen J, Joki-Erkkilä VP, Hulkkonen J, Pessi T, Nieminen MM, Aromaa A, et al. The IL1A genotype is associated with nasal polyposis in asthmatic adults. Allergy. 2003; 58:393–396.
Article
46. Erbek SS, Yurtcu E, Erbek S, Atac FB, Sahin FI, Cakmak O. Proinflammatory cytokine single nucleotide polymorphisms in nasal polyposis. Arch Otolaryngol Head Neck Surg. 2007; 133:705–709.
Article
47. Mfuna Endam L, Cormier C, Bossé Y, Filali-Mouhim A, Desrosiers M. Association of IL1A, IL1B, and TNF gene polymorphisms with chronic rhinosinusitis with and without nasal polyposis: a replication study. Arch Otolaryngol Head Neck Surg. 2010; 136:187–192.
48. Zhang Y, Endam LM, Filali-Mouhim A, Zhao L, Desrosiers M, Han D, et al. Polymorphisms in RYBP and AOAH genes are associated with chronic rhinosinusitis in a Chinese population: a replication study. PLoS One. 2012; 7:e39247.
Article
49. Henmyr V, Vandeplas G, Halldén C, Säll T, Olze H, Bachert C, et al. Replication study of genetic variants associated with chronic rhinosinusitis and nasal polyposis. J Allergy Clin Immunol. 2014; 133:273–275.
Article
50. Bossé Y, Bacot F, Montpetit A, Rung J, Qu HQ, Engert JC, et al. Identification of susceptibility genes for complex diseases using pooling-based genome-wide association scans. Hum Genet. 2009; 125:305–318.
Article
51. Cormier C, Mfuna Endam L, Filali-Mouhim A, Boisvert P, Boulet LP, Boulay ME, et al. A pooling-based genomewide association study identifies genetic variants associated with Staphylococcus aureus colonization in chronic rhinosinusitis patients. Int Forum Allergy Rhinol. 2014; 4:207–215.
52. Kristjansson RP, Benonisdottir S, Davidsson OB, Oddsson A, Tragante V, Sigurdsson JK, et al. A loss-of-function variant in ALOX15 protects against nasal polyps and chronic rhinosinusitis. Nat Genet. 2019; 51:267–276.
53. Zhang Y, Gevaert E, Lou H, Wang X, Zhang L, Bachert C, et al. Chronic rhinosinusitis in Asia. J Allergy Clin Immunol. 2017; 140:1230–1239.
Article
54. Zhang XH, Zhang YN, Liu Z. MicroRNA in chronic rhinosinusitis and allergic rhinitis. Curr Allergy Asthma Rep. 2014; 14:415.
Article
55. Zheng YB, Zhao Y, Yue LY, Lin P, Liu YF, Xian JM, et al. Pilot study of DNA methylation in the pathogenesis of chronic rhinosinusitis with nasal polyps. Rhinology. 2015; 53:345–352.
Article
56. Zhang XH, Zhang YN, Li HB, Hu CY, Wang N, Cao PP, et al. Overexpression of miR-125b, a novel regulator of innate immunity, in eosinophilic chronic rhinosinusitis with nasal polyps. Am J Respir Crit Care Med. 2012; 185:140–151.
Article
57. Ma ZX, Tan X, Shen Y, Ke X, Yang YC, He XB, et al. MicroRNA expression profile of mature dendritic cell in chronic rhinosinusitis. Inflamm Res. 2015; 64:885–893.
Article
58. Hariri BM, Cohen NA. New insights into upper airway innate immunity. Am J Rhinol Allergy. 2016; 30:319–323.
Article
59. Soyka MB, Wawrzyniak P, Eiwegger T, Holzmann D, Treis A, Wanke K, et al. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-γ and IL-4. J Allergy Clin Immunol. 2012; 130:1087–1096.e10.
Article
60. Kim DW, Cho SH. Emerging endotypes of chronic rhinosinusitis and its application to precision medicine. Allergy Asthma Immunol Res. 2017; 9:299–306.
Article
61. Miljkovic D, Bassiouni A, Cooksley C, Ou J, Hauben E, Wormald PJ, et al. Association between group 2 innate lymphoid cells enrichment, nasal polyps and allergy in chronic rhinosinusitis. Allergy. 2014; 69:1154–1161.
Article
62. Nagarkar DR, Poposki JA, Tan BK, Comeau MR, Peters AT, Hulse KE, et al. Thymic stromal lymphopoietin activity is increased in nasal polyps of patients with chronic rhinosinusitis. J Allergy Clin Immunol. 2013; 132:593–600.e12.
Article
63. Ito T, Wang YH, Duramad O, Hori T, Delespesse GJ, Watanabe N, et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med. 2005; 202:1213–1223.
Article
64. Symowski C, Voehringer D. Interactions between innate lymphoid cells and cells of the innate and adaptive immune system. Front Immunol. 2017; 8:1422.
Article
65. McKenzie ANJ, Spits H, Eberl G. Innate lymphoid cells in inflammation and immunity. Immunity. 2014; 41:366–374.
Article
66. Liao B, Cao PP, Zeng M, Zhen Z, Wang H, Zhang YN, et al. Interaction of thymic stromal lymphopoietin, IL-33, and their receptors in epithelial cells in eosinophilic chronic rhinosinusitis with nasal polyps. Allergy. 2015; 70:1169–1180.
Article
67. Shin HW, Kim DK, Park MH, Eun KM, Lee M, So D, et al. IL-25 as a novel therapeutic target in nasal polyps of patients with chronic rhinosinusitis. J Allergy Clin Immunol. 2015; 135:1476–1485.e7.
Article
68. Lee M, Kim DW, Shin HW. Targeting IL-25 as a novel therapy in chronic rhinosinusitis with nasal polyps. Curr Opin Allergy Clin Immunol. 2017; 17:17–22.
Article
69. Kim DK, Jin HR, Eun KM, Mo JH, Cho SH, Oh S, et al. The role of interleukin-33 in chronic rhinosinusitis. Thorax. 2017; 72:635–645.
Article
70. Poposki JA, Klingler AI, Tan BK, Soroosh P, Banie H, Lewis G, et al. Group 2 innate lymphoid cells are elevated and activated in chronic rhinosinusitis with nasal polyps. Immun Inflamm Dis. 2017; 5:233–243.
Article
71. Mjösberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM, Piet B, et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol. 2011; 12:1055–1062.
Article
72. Schleimer RP. Immunopathogenesis of chronic rhinosinusitis and nasal polyposis. Annu Rev Pathol. 2017; 12:331–357.
Article
73. Poposki JA, Peterson S, Welch K, Schleimer RP, Hulse KE, Peters AT, et al. Elevated presence of myeloid dendritic cells in nasal polyps of patients with chronic rhinosinusitis. Clin Exp Allergy. 2015; 45:384–393.
Article
74. Kim DK, Park MH, Chang DY, Eun KM, Shin HW, Mo JH, et al. MBP-positive and CD11c-positive cells are associated with different phenotypes of Korean patients with non-asthmatic chronic rhinosinusitis. PLoS One. 2014; 9:e111352.
Article
75. Scheckenbach K, Wagenmann M. Cytokine patterns and endotypes in acute and chronic rhinosinusitis. Curr Allergy Asthma Rep. 2016; 16:3.
Article
76. Hulse KE, Stevens WW, Tan BK, Schleimer RP. Pathogenesis of nasal polyposis. Clin Exp Allergy. 2015; 45:328–346.
Article
77. Mahdavinia M, Carter RG, Ocampo CJ, Stevens W, Kato A, Tan BK, et al. Basophils are elevated in nasal polyps of patients with chronic rhinosinusitis without aspirin sensitivity. J Allergy Clin Immunol. 2014; 133:1759–1763.
Article
78. Derycke L, Eyerich S, Van Crombruggen K, Perez-Novo C, Holtappels G, Deruyck N, et al. Mixed T helper cell signatures in chronic rhinosinusitis with and without polyps. PLoS One. 2014; 9:e97581.
Article
79. Halderman A, Lane AP. Genetic and immune dysregulation in chronic rhinosinusitis. Otolaryngol Clin North Am. 2017; 50:13–28.
Article
80. Van Zele T, Claeys S, Gevaert P, Van Maele G, Holtappels G, Van Cauwenberge P, et al. Differentiation of chronic sinus diseases by measurement of inflammatory mediators. Allergy. 2006; 61:1280–1289.
Article
81. Zhang N, Van Zele T, Perez-Novo C, Van Bruaene N, Holtappels G, DeRuyck N, et al. Different types of T-effector cells orchestrate mucosal inflammation in chronic sinus disease. J Allergy Clin Immunol. 2008; 122:961–968.
Article
82. Cao PP, Li HB, Wang BF, Wang SB, You XJ, Cui YH, et al. Distinct immunopathologic characteristics of various types of chronic rhinosinusitis in adult Chinese. J Allergy Clin Immunol. 2009; 124:478–484. 484.e1–484.e2.
Article
83. Saitoh T, Kusunoki T, Yao T, Kawano K, Kojima Y, Miyahara K, et al. Role of interleukin-17A in the eosinophil accumulation and mucosal remodeling in chronic rhinosinusitis with nasal polyps associated with asthma. Int Arch Allergy Immunol. 2010; 151:8–16.
Article
84. Hulse KE. Immune mechanisms of chronic rhinosinusitis. Curr Allergy Asthma Rep. 2016; 16:1.
Article
85. Hulse KE, Norton JE, Suh L, Zhong Q, Mahdavinia M, Simon P, et al. Chronic rhinosinusitis with nasal polyps is characterized by B-cell inflammation and EBV-induced protein 2 expression. J Allergy Clin Immunol. 2013; 131:1075–1083. 1083.e1–1083.e7.
Article
86. Gevaert P, Nouri-Aria KT, Wu H, Harper CE, Takhar P, Fear DJ, et al. Local receptor revision and class switching to IgE in chronic rhinosinusitis with nasal polyps. Allergy. 2013; 68:55–63.
Article
87. Gevaert P, Calus L, Van Zele T, Blomme K, De Ruyck N, Bauters W, et al. Omalizumab is effective in allergic and nonallergic patients with nasal polyps and asthma. J Allergy Clin Immunol. 2013; 131:110–116.e1.
Article
88. Van Roey GA, Vanison CC, Wu J, Huang JH, Suh LA, Carter RG, et al. Classical complement pathway activation in the nasal tissue of patients with chronic rhinosinusitis. J Allergy Clin Immunol. 2017; 140:89–100.e2.
Article
89. Tan BK, Li QZ, Suh L, Kato A, Conley DB, Chandra RK, et al. Evidence for intranasal antinuclear autoantibodies in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2011; 128:1198–1206.e1.
Article
90. Gonçalves C, Pinaffi JV, Carvalho JF, Pinna FR, Constantino GT, Voegels RL, et al. Antineutrophil cytoplasmic antibodies in chronic rhinosinusitis may be a marker of undisclosed vasculitis. Am J Rhinol. 2007; 21:691–694.
Article
91. Jeffe JS, Seshadri S, Hamill KJ, Huang JH, Carter R, Suh L, et al. A role for anti-BP180 autoantibodies in chronic rhinosinusitis. Laryngoscope. 2013; 123:2104–2111.
Article
92. Hoggard M, Wagner Mackenzie B, Jain R, Taylor MW, Biswas K, Douglas RG. Chronic rhinosinusitis and the evolving understanding of microbial ecology in chronic inflammatory mucosal disease. Clin Microbiol Rev. 2017; 30:321–348.
Article
93. Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature. 2016; 533:543–546.
Article
94. Hauser LJ, Feazel LM, Ir D, Fang R, Wagner BD, Robertson CE, et al. Sinus culture poorly predicts resident microbiota. Int Forum Allergy Rhinol. 2015; 5:3–9.
Article
95. Mahdavinia M, Keshavarzian A, Tobin MC, Landay AL, Schleimer RP. A comprehensive review of the nasal microbiome in chronic rhinosinusitis (CRS). Clin Exp Allergy. 2016; 46:21–41.
Article
96. Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov. 2003; 2:114–122.
Article
97. Zernotti ME, Angel Villegas N, Roques Revol M, Baena-Cagnani CE, Arce Miranda JE, Paredes ME, et al. Evidence of bacterial biofilms in nasal polyposis. J Investig Allergol Clin Immunol. 2010; 20:380–385.
98. Jain R, Douglas R. When and how should we treat biofilms in chronic sinusitis? Curr Opin Otolaryngol Head Neck Surg. 2014; 22:16–21.
Article
99. Boase S, Foreman A, Cleland E, Tan L, Melton-Kreft R, Pant H, et al. The microbiome of chronic rhinosinusitis: culture, molecular diagnostics and biofilm detection. BMC Infect Dis. 2013; 13:210.
Article
100. Seiberling KA, Conley DB, Tripathi A, Grammer LC, Shuh L, Haines GK 3rd, et al. Superantigens and chronic rhinosinusitis: detection of staphylococcal exotoxins in nasal polyps. Laryngoscope. 2005; 115:1580–1585.
Article
101. Yu RL, Dong Z. Proinflammatory impact of Staphylococcus aureus enterotoxin B on human nasal epithelial cells and inhibition by dexamethasone. Am J Rhinol Allergy. 2009; 23:15–20.
102. Bachert C, Gevaert P, Holtappels G, Johansson SG, van Cauwenberge P. Total and specific IgE in nasal polyps is related to local eosinophilic inflammation. J Allergy Clin Immunol. 2001; 107:607–614.
Article
103. Qiao F, Xie Y, Yin WJ, Kang M, Guo XJ, Chen HL, et al. Nasal colonization by opportunistic pathogens among health care workers: a survey. Zhonghua Yi Yuan Gan Ran Xue Za Zhi. 2008; 18:1371–1373.
104. Ba L, Zhang N, Meng J, Zhang J, Lin P, Zhou P, et al. The association between bacterial colonization and inflammatory pattern in Chinese chronic rhinosinusitis patients with nasal polyps. Allergy. 2011; 66:1296–1303.
Article
105. Liu Q, Lu X, Bo M, Qing H, Wang X, Zhang L. The microbiology of chronic rhinosinusitis with and withowith and without nasal polyps. Acta Otolaryngol. 2014; 134:1251–1258.
106. Abreu NA, Nagalingam NA, Song Y, Roediger FC, Pletcher SD, Goldberg AN, et al. Sinus microbiome diversity depletion and Corynebacterium tuberculostearicum enrichment mediates rhinosinusitis. Sci Transl Med. 2012; 4:151ra124.
107. Cleland EJ, Bassiouni A, Vreugde S, Wormald PJ. The bacterial microbiome in chronic rhinosinusitis: richness, diversity, postoperative changes, and patient outcomes. Am J Rhinol Allergy. 2016; 30:37–43.
Article
108. Cleland EJ, Bassiouni A, Boase S, Dowd S, Vreugde S, Wormald PJ. The fungal microbiome in chronic rhinosinusitis: richness, diversity, postoperative changes and patient outcomes. Int Forum Allergy Rhinol. 2014; 4:259–265.
Article
109. Aurora R, Chatterjee D, Hentzleman J, Prasad G, Sindwani R, Sanford T. Contrasting the microbiomes from healthy volunteers and patients with chronic rhinosinusitis. JAMA Otolaryngol Head Neck Surg. 2013; 139:1328–1338.
Article
110. Lee JT, Frank DN, Ramakrishnan V. Microbiome of the paranasal sinuses: update and literature review. Am J Rhinol Allergy. 2016; 30:3–16.
Article
111. Shirtliff ME, Peters BM, Jabra-Rizk MA. Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol Lett. 2009; 299:1–8.
112. Soler ZM, Oyer SL, Kern RC, Senior BA, Kountakis SE, Marple BF, et al. Antimicrobials and chronic rhinosinusitis with or without polyposis in adults: an evidenced-based review with recommendations. Int Forum Allergy Rhinol. 2013; 3:31–47.
Article
113. Rank MA, Wollan P, Kita H, Yawn BP. Acute exacerbations of chronic rhinosinusitis occur in a distinct seasonal pattern. J Allergy Clin Immunol. 2010; 126:168–169.
Article
114. Cho GS, Moon BJ, Lee BJ, Gong CH, Kim NH, Kim YS, et al. High rates of detection of respiratory viruses in the nasal washes and mucosae of patients with chronic rhinosinusitis. J Clin Microbiol. 2013; 51:979–984.
Article
115. Liao B, Hu CY, Liu T, Liu Z. Respiratory viral infection in the chronic persistent phase of chronic rhinosinusitis. Laryngoscope. 2014; 124:832–837.
Article
116. Wang JH, Kwon HJ, Jang YJ. Rhinovirus enhances various bacterial adhesions to nasal epithelial cells simultaneously. Laryngoscope. 2009; 119:1406–1411.
Article
117. Jackson DJ, Johnston SL. The role of viruses in acute exacerbations of asthma. J Allergy Clin Immunol. 2010; 125:1178–1187.
Article
118. Wang X, Zhang N, Glorieux S, Holtappels G, Vaneechoutte M, Krysko O, et al. Herpes simplex virus type 1 infection facilitates invasion of Staphylococcus aureus into the nasal mucosa and nasal polyp tissue. PLoS One. 2012; 7:e39875.
119. Lan F, Wang XD, Nauwynck HJ, Holtappels G, Zhang L, Johnston SL, et al. Th2 biased upper airway inflammation is associated with an impaired response to viral infection with Herpes simplex virus 1. Rhinology. 2016; 54:141–149.
120. London NR Jr, Lane AP. Innate immunity and chronic rhinosinusitis: what we have learned from animal models. Laryngoscope Investig Otolaryngol. 2016; 1:49–56.
Article
121. Wei Y, Xia W, Ye X, Fan Y, Shi J, Wen W, et al. The antimicrobial protein short palate, lung, and nasal epithelium clone 1 (SPLUNC1) is differentially modulated in eosinophilic and noneosinophilic chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2014; 133:420–428.
Article
122. Sims JE, Williams DE, Morrissey PJ, Garka K, Foxworthe D, Price V, et al. Molecular cloning and biological characterization of a novel murine lymphoid growth factor. J Exp Med. 2000; 192:671–680.
Article
123. Liu YJ. Thymic stromal lymphopoietin: master switch for allergic inflammation. J Exp Med. 2006; 203:269–273.
Article
124. Ouyang Y, Fan E, Li Y, Wang X, Zhang L. Clinical characteristics and expression of thymic stromal lymphopoetin in eosinophilic and non-eosinophilic chronic rhinosinusitis. ORL J Otorhinolaryngol Relat Spec. 2013; 75:37–45.
Article
125. Movérare R, Elfman L, Stålenheim G, Björnsson E, Movérare R. Study of the Th1/Th2 balance, including IL-10 production, in cultures of peripheral blood mononuclear cells from birch-pollen-allergic patients. Allergy. 2000; 55:171–175.
126. Bousquet J, Khaltaev N, Cruz AA, Denburg J, Fokkens WJ, Togias A, et al. Allergic rhinitis and its impact on asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA(2)LEN and AllerGen). Allergy. 2008; 63:Suppl 86. 8–160.
127. Ciprandi G, De Amici M, Murdaca G, Fenoglio D, Ricciardolo F, Marseglia G, et al. Serum interleukin-17 levels are related to clinical severity in allergic rhinitis. Allergy. 2009; 64:1375–1378.
Article
128. Hong HY, Chen FH, Sun YQ, Hu XT, Wei Y, Fan YP, et al. Local IL-25 contributes to Th2-biased inflammatory profiles in nasal polyps. Allergy. 2018; 73:459–469.
Article
129. Van Bruaene N, Pérez-Novo CA, Basinski TM, Van Zele T, Holtappels G, De Ruyck N, et al. T-cell regulation in chronic paranasal sinus disease. J Allergy Clin Immunol. 2008; 121:1435–1441. 1441.e1–1441.e3.
Article
130. Shi LL, Xiong P, Zhang L, Cao PP, Liao B, Lu X, et al. Features of airway remodeling in different types of Chinese chronic rhinosinusitis are associated with inflammation patterns. Allergy. 2013; 68:101–109.
Article
131. Derycke L, Zhang N, Holtappels G, Dutré T, Bachert C. IL-17A as a regulator of neutrophil survival in nasal polyp disease of patients with and without cystic fibrosis. J Cyst Fibros. 2012; 11:193–200.
Article
132. Makihara S, Okano M, Fujiwara T, Kariya S, Noda Y, Higaki T, et al. Regulation and characterization of IL-17A expression in patients with chronic rhinosinusitis and its relationship with eosinophilic inflammation. J Allergy Clin Immunol. 2010; 126:397–400. 400.e1–400.e11.
Article
133. Jiang XD, Li GY, Li L, Dong Z, Zhu DD. The characterization of IL-17A expression in patients with chronic rhinosinusitis with nasal polyps. Am J Rhinol Allergy. 2011; 25:e171–5.
Article
134. Wu X, Wang S, Han M, Song B, Ye P, Ma S, et al. Critical link between glycogen synthase kinase 3β and forkhead box P3 in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2015; 136:1698–1700.e12.
Article
135. Ma J, Shi LL, Deng YK, Wang H, Cao PP, Long XB, et al. CD8(+) T cells with distinct cytokine-producing features and low cytotoxic activity in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Clin Exp Allergy. 2016; 46:1162–1175.
136. Miljkovic D, Psaltis A, Wormald PJ, Vreugde S. T regulatory and Th17 cells in chronic rhinosinusitis with polyps. Int Forum Allergy Rhinol. 2016; 6:826–834.
Article
137. Pant H, Hughes A, Schembri M, Miljkovic D, Krumbiegel D. CD4+ and CD8+ regulatory T cells in chronic rhinosinusitis mucosa. Am J Rhinol Allergy. 2014; 28:83–89.
138. Kato A. Immunopathology of chronic rhinosinusitis. Allergol Int. 2015; 64:121–130.
Article
139. Min JY, Hulse KE, Tan BK. B-Cells and antibody-mediated pathogenesis in chronic rhinosinusitis with nasal polyps. Adv Otorhinolaryngol. 2016; 79:48–57.
Article
140. Kato A, Hulse KE, Tan BK, Schleimer RP. B-lymphocyte lineage cells and the respiratory system. J Allergy Clin Immunol. 2013; 131:933–957.
Article
141. Dilidaer , Zheng Y, Liu Z, Hu X, Zhang J, Hu L, et al. Increased BAFF expression in nasal polyps is associated with local IgE production, Th2 response and concomitant asthma. Eur Arch Otorhinolaryngol. 2017; 274:1883–1890.
Article
142. Ryu G, Kim DK, Dhong HJ, Eun KM, Lee KE, Kong IG, et al. Immunological characteristics in refractory chronic rhinosinusitis with nasal polyps undergoing revision surgeries. Allergy Asthma Immunol Res. 2019; 11:664–676.
Article
143. Baba S, Kondo K, Toma-Hirano M, Kanaya K, Suzukawa K, Ushio M, et al. Local increase in IgE and class switch recombination to IgE in nasal polyps in chronic rhinosinusitis. Clin Exp Allergy. 2014; 44:701–712.
Article
144. Patadia M, Dixon J, Conley D, Chandra R, Peters A, Suh LA, et al. Evaluation of the presence of B-cell attractant chemokines in chronic rhinosinusitis. Am J Rhinol Allergy. 2010; 24:11–16.
Article
145. Shinohara ML, Lu L, Bu J, Werneck MB, Kobayashi KS, Glimcher LH, et al. Osteopontin expression is essential for interferon-alpha production by plasmacytoid dendritic cells. Nat Immunol. 2006; 7:498–506.
146. Liu WL, Zhang H, Zheng Y, Wang HT, Chen FH, Xu L, et al. Expression and regulation of osteopontin in chronic rhinosinusitis with nasal polyps. Clin Exp Allergy. 2015; 45:414–422.
Article
147. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002; 418:191–195.
Article
148. Müller S, Scaffidi P, Degryse B, Bonaldi T, Ronfani L, Agresti A, et al. New EMBO members' review: the double life of HMGB1 chromatin protein: architectural factor and extracellular signal. EMBO J. 2001; 20:4337–4340.
149. Chen D, Mao M, Bellussi LM, Passali D, Chen L. Increase of high mobility group box chromosomal protein 1 in eosinophilic chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol. 2014; 4:453–462.
Article
150. Suzuki H, Takahashi Y, Wataya H, Ikeda K, Nakabayashi S, Shimomura A, et al. Mechanism of neutrophil recruitment induced by IL-8 in chronic sinusitis. J Allergy Clin Immunol. 1996; 98:659–670.
151. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell. 2009; 16:183–194.
152. Wang X, Du J, Zhao C. Bacterial biofilms are associated with inflammatory cells infiltration and the innate immunity in chronic rhinosinusitis with or without nasal polyps. Inflammation. 2014; 37:871–879.
Article
153. Psaltis AJ, Weitzel EK, Ha KR, Wormald PJ. The effect of bacterial biofilms on post-sinus surgical outcomes. Am J Rhinol. 2008; 22:1–6.
Article
154. Pothoven KL, Norton JE, Suh LA, Carter RG, Harris KE, Biyasheva A, et al. Neutrophils are a major source of the epithelial barrier disrupting cytokine oncostatin M in patients with mucosal airways disease. J Allergy Clin Immunol. 2017; 139:1966–1978.e9.
Article
155. Kim DW, Kim DK, Jo A, Jin HR, Eun KM, Mo JH, et al. Age-related decline of neutrophilic inflammation is associated with better postoperative prognosis in non-eosinophilic nasal polyps. PLoS One. 2016; 11:e0148442.
Article
156. Kim DK, Kim JY, Han YE, Kim JK, Lim HS, Eun KM, et al. Elastase-positive neutrophils are associated with refractoriness of chronic rhinosinusitis with nasal polyps in an Asian population. Allergy Asthma Immunol Res. 2020; 12:42–55.
Article
157. Yoon BN, Choi NG, Lee HS, Cho KS, Roh HJ. Induction of interleukin-8 from nasal epithelial cells during bacterial infection: the role of IL-8 for neutrophil recruitment in chronic rhinosinusitis. Mediators Inflamm. 2010; 2010:813610.
Article
158. Watanabe K, Gilchrist CA, Uddin MJ, Burgess SL, Abhyankar MM, Moonah SN, et al. Microbiome-mediated neutrophil recruitment via CXCR2 and protection from amebic colitis. PLoS Pathog. 2017; 13:e1006513.
Article
159. Rudack C, Sachse F, Alberty J. Primary role of growth-related oncogene-alpha and granulocyte chemotactic protein-2 as neutrophil chemoattractants in chronic rhinosinusitis. Clin Exp Allergy. 2006; 36:748–759.
Article
160. Wang H, Pan L, Liu Z. Neutrophils as a protagonist and target in chronic rhinosinusitis. Clin Exp Otorhinolaryngol. 2019; 12:337–347.
Article
161. Wang H, Li ZY, Jiang WX, Liao B, Zhai GT, Wang N, et al. The activation and function of IL-36γ in neutrophilic inflammation in chronic rhinosinusitis. J Allergy Clin Immunol. 2018; 141:1646–1658.
Article
162. Wang X, Zhao C, Ji W, Xu Y, Guo H. Relationship of TLR2, TLR4 and tissue remodeling in chronic rhinosinusitis. Int J Clin Exp Pathol. 2015; 8:1199–1212.
163. Meng J, Zhou P, Liu Y, Liu F, Yi X, Liu S, et al. The development of nasal polyp disease involves early nasal mucosal inflammation and remodelling. PLoS One. 2013; 8:e82373.
Article
164. Li X, Meng J, Qiao X, Liu Y, Liu F, Zhang N, et al. Expression of TGF, matrix metalloproteinases, and tissue inhibitors in Chinese chronic rhinosinusitis. J Allergy Clin Immunol. 2010; 125:1061–1068.
Article
165. Hellquist HB. Nasal polyps update. Histopathology. Allergy Asthma Proc. 1996; 17:237–242.
166. Van Crombruggen K, Zhang N, Gevaert P, Tomassen P, Bachert C. Pathogenesis of chronic rhinosinusitis: inflammation. J Allergy Clin Immunol. 2011; 128:728–732.
Article
167. Watelet JB, Dogne JM, Mullier F. Remodeling and repair in rhinosinusitis. Curr Allergy Asthma Rep. 2015; 15:34.
Article
168. Li XS, Qian J, Li HE, Li JR. A review of tissue remodeling in chronic rhino-sinusitis. J Otolaryngol Ophthalmol Shandong Univ. 2014; 28:84–86.
169. Li YC, An YS, Wang T, Zang HR. Analysis of transforming growth factor β signaling in chronic rhinosinusitis. Chin Med J (Engl). 2013; 126:3340–3343.
170. Bhandari A, Takeuchi K, Suzuki S, Harada T, Hayashi S, Imanaka-Yoshida K, et al. Increased expression of matrix metalloproteinase-2 in nasal polyps. Acta Otolaryngol. 2004; 124:1165–1170.
Article
171. Kahveci OK, Derekoy FS, Yilmaz M, Serteser M, Altuntas A. The role of MMP-9 and TIMP-1 in nasal polyp formation. Swiss Med Wkly. 2008; 138:684–688.
172. Ebenezer JA, Christensen JM, Oliver BG, Oliver RA, Tjin G, Ho J, et al. Periostin as a marker of mucosal remodelling in chronic rhinosinusitis. Rhinology. 2017; 55:234–241.
Article
173. Takabayashi T, Kato A, Peters AT, Hulse KE, Suh LA, Carter R, et al. Increased expression of factor XIII-A in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2013; 132:584–592.e4.
Article
174. Takabayashi T, Kato A, Peters AT, Hulse KE, Suh LA, Carter R, et al. Excessive fibrin deposition in nasal polyps caused by fibrinolytic impairment through reduction of tissue plasminogen activator expression. Am J Respir Crit Care Med. 2013; 187:49–57.
Article
175. Kim DK, Jin HR, Eun KM, Mutusamy S, Cho SH, Oh S, et al. Non-eosinophilic nasal polyps shows increased epithelial proliferation and localized disease pattern in the early stage. PLoS One. 2015; 10:e0139945.
Article
176. Saitoh T, Kusunoli T, Yao T, Kawano K, Kojima Y, Miyahara K, et al. Relationship between epithelial damage or basement membrane thickness and eosinophilic infiltration in nasal polyps with chronic rhinosinusitis. Rhinology. 2009; 47:275–279.
Article
177. Lee YM, Kim SS, Kim HA, Suh YJ, Lee SK, Nahm DH, et al. Eosinophil inflammation of nasal polyp tissue: relationships with matrix metalloproteinases, tissue inhibitor of metalloproteinase-1, and transforming growth factor-beta1. J Korean Med Sci. 2003; 18:97–102.
Article
178. Bousquet J, Jacot W, Vignola AM, Bachert C, Van Cauwenberge P. Allergic rhinitis: a disease remodeling the upper airways? J Allergy Clin Immunol. 2004; 113:43–49.
179. Van Bruaene N, C PN, Van Crombruggen K, De Ruyck N, Holtappels G, Van Cauwenberge P, et al. Inflammation and remodelling patterns in early stage chronic rhinosinusitis. Clin Exp Allergy. 2012; 42:883–890.
Article
180. Niessen CM. Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol. 2007; 127:2525–2532.
Article
181. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009; 119:1420–1428.
Article
182. Hupin C, Gohy S, Bouzin C, Lecocq M, Polette M, Pilette C. Features of mesenchymal transition in the airway epithelium from chronic rhinosinusitis. Allergy. 2014; 69:1540–1549.
Article
183. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009; 139:871–890.
Article
184. Shin HW, Cho K, Kim DW, Han DH, Khalmuratova R, Kim SW, et al. Hypoxia-inducible factor 1 mediates nasal polypogenesis by inducing epithelial-to-mesenchymal transition. Am J Respir Crit Care Med. 2012; 185:944–954.
Article
185. Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008; 14:818–829.
Article
186. Kennedy DW, Senior BA, Gannon FH, Montone KT, Hwang P, Lanza DC. Histology and histomorphometry of ethmoid bone in chronic rhinosinusitis. Laryngoscope. 1998; 108:502–507.
Article
187. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999; 13:2412–2424.
Article
188. Palmqvist P, Persson E, Conaway HH, Lerner UH. IL-6, leukemia inhibitory factor, and oncostatin M stimulate bone resorption and regulate the expression of receptor activator of NF-kappa B ligand, osteoprotegerin, and receptor activator of NF-kappa B in mouse calvariae. J Immunol. 2002; 169:3353–3362.
189. Oue S, Ramezanpour M, Paramasivan S, Miljkovic D, Cooksley CM, Bassiouni A, et al. Increased IL-13 expression is independently associated with neo-osteogenesis in patients with chronic rhinosinusitis. J Allergy Clin Immunol. 2017; 140:1444–1448.e11.
Article
190. Khalmuratova R, Shin HW, Kim DW, Park JW. Interleukin (IL)-13 and IL-17A contribute to neo-osteogenesis in chronic rhinosinusitis by inducing RUNX2. EBioMedicine. 2019; 46:330–341.
Article
191. Okano K, Tsukazaki T, Ohtsuru A, Namba H, Osaki M, Iwasaki K, et al. Parathyroid hormone-related peptide in synovial fluid and disease activity of rheumatoid arthritis. Br J Rheumatol. 1996; 35:1056–1062.
Article
192. Funk JL, Cordaro LA, Wei H, Benjamin JB, Yocum DE. Synovium as a source of increased amino-terminal parathyroid hormone-related protein expression in rheumatoid arthritis. A possible role for locally produced parathyroid hormone-related protein in the pathogenesis of rheumatoid arthritis. J Clin Invest. 1998; 101:1362–1371.
Article
193. Wang M, Ye T, Liang N, Huang Z, Cui S, Li Y, et al. Differing roles for TGF-β/Smad signaling in osteitis in chronic rhinosinusitis with and without nasal polyps. Am J Rhinol Allergy. 2015; 29:e152–9.
Article
194. Giacchi RJ, Lebowitz RA, Yee HT, Light JP, Jacobs JB. Histopathologic evaluation of the ethmoid bone in chronic sinusitis. Am J Rhinol. 2001; 15:193–197.
Article
195. Tovi F, Benharroch D, Gatot A, Hertzanu Y. Osteoblastic osteitis of the maxillary sinus. Laryngoscope. 1992; 102:426–430.
Article
196. Lee JT, Kennedy DW, Palmer JN, Feldman M, Chiu AG. The incidence of concurrent osteitis in patients with chronic rhinosinusitis: a clinicopathological study. Am J Rhinol. 2006; 20:278–282.
Article
197. Cho SH, Min HJ, Han HX, Paik SS, Kim KR. CT analysis and histopathology of bone remodeling in patients with chronic rhinosinusitis. Otolaryngol Head Neck Surg. 2006; 135:404–408.
Article
198. Biedlingmaier JF, Whelan P, Zoarski G, Rothman M. Histopathology and CT analysis of partially resected middle turbinates. Laryngoscope. 1996; 106:102–104.
Article
199. Georgalas C, Videler W, Freling N, Fokkens W. Global Osteitis Scoring Scale and chronic rhinosinusitis: a marker of revision surgery. Clin Otolaryngol. 2010; 35:455–461.
Article
200. Dong Y, Zhou B, Huang Z, Huang Q, Cui S, Li Y, et al. Evaluating bone remodeling by measuring Hounsfield units in a rabbit model of rhinosinusitis: is it superior to measuring bone thickness? Int Forum Allergy Rhinol. 2018; 8:1342–1348.
Article
201. Meltzer EO, Hamilos DL, Hadley JA, Lanza DC, Marple BF, Nicklas RA, et al. Rhinosinusitis: establishing definitions for clinical research and patient care. J Allergy Clin Immunol. 2004; 114:155–212.
Article
202. Van Zele T, Gevaert P, Holtappels G, Beule A, Wormald PJ, Mayr S, et al. Oral steroids and doxycycline: two different approaches to treat nasal polyps. J Allergy Clin Immunol. 2010; 125:1069–1076.e4.
Article
203. Akdis CA, Bachert C, Cingi C, Dykewicz MS, Hellings PW, Naclerio RM, et al. Endotypes and phenotypes of chronic rhinosinusitis: a PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol. 2013; 131:1479–1490.
204. Bachert C, Mannent L, Naclerio RM, Mullol J, Ferguson BJ, Gevaert P, et al. Effect of subcutaneous dupilumab on nasal polyp burden in patients with chronic sinusitis and nasal polyposis: a randomized clinical trial. JAMA. 2016; 315:469–479.
205. Gevaert P, Van Bruaene N, Cattaert T, Van Steen K, Van Zele T, Acke F, et al. Mepolizumab, a humanized anti-IL-5 mAb, as a treatment option for severe nasal polyposis. J Allergy Clin Immunol. 2011; 128:989–995.e1-8.
Article
206. Van Zele T, Holtappels G, Gevaert P, Bachert C. Differences in initial immunoprofiles between recurrent and nonrecurrent chronic rhinosinusitis with nasal polyps. Am J Rhinol Allergy. 2014; 28:192–198.
Article
207. Wang XD, Zheng M, Lou HF, Wang CS, Zhang Y, Bo MY, et al. An increased prevalence of self-reported allergic rhinitis in major Chinese cities from 2005 to 2011. Allergy. 2016; 71:1170–1180.
Article
208. Mygind N. Nasal polyps. In : Mygind N, editor. Nasal allergy. 2nd ed. Oxford: Blackwell scientific publications;1978. p. 233–238.
209. Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, Gibbs RL, et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med. 1999; 160:1001–1008.
Article
210. Hu Y, Cao PP, Liang GT, Cui YH, Liu Z. Diagnostic significance of blood eosinophil count in eosinophilic chronic rhinosinusitis with nasal polyps in Chinese adults. Laryngoscope. 2012; 122:498–503.
Article
211. Zuo K, Guo J, Chen F, Xu R, Xu G, Shi J, et al. Clinical characteristics and surrogate markers of eosinophilic chronic rhinosinusitis in Southern China. Eur Arch Otorhinolaryngol. 2014; 271:2461–2468.
Article
212. Payne SC, Early SB, Huyett P, Han JK, Borish L, Steinke JW. Evidence for distinct histologic profile of nasal polyps with and without eosinophilia. Laryngoscope. 2011; 121:2262–2267.
Article
213. Cao PP, Zhang YN, Liao B, Ma J, Wang BF, Wang H, et al. Increased local IgE production induced by common aeroallergens and phenotypic alteration of mast cells in Chinese eosinophilic, but not non-eosinophilic, chronic rhinosinusitis with nasal polyps. Clin Exp Allergy. 2014; 44:690–700.
Article
214. Kim SJ, Lee KH, Kim SW, Cho JS, Park YK, Shin SY. Changes in histological features of nasal polyps in a Korean population over a 17-year period. Otolaryngol Head Neck Surg. 2013; 149:431–437.
Article
215. Nakayama T, Yoshikawa M, Asaka D, Okushi T, Matsuwaki Y, Otori N, et al. Mucosal eosinophilia and recurrence of nasal polyps - new classification of chronic rhinosinusitis. Rhinology. 2011; 49:392–396.
216. Tikaram A, Prepageran N. Asian nasal polyps: a separate entity? Med J Malaysia. 2013; 68:445–447.
217. Mahdavinia M, Suh LA, Carter RG, Stevens WW, Norton JE, Kato A, et al. Increased noneosinophilic nasal polyps in chronic rhinosinusitis in US second-generation Asians suggest genetic regulation of eosinophilia. J Allergy Clin Immunol. 2015; 135:576–579.
Article
218. Katotomichelakis M, Tantilipikorn P, Holtappels G, De Ruyck N, Feng L, Van Zele T, et al. Inflammatory patterns in upper airway disease in the same geographical area may change over time. Am J Rhinol Allergy. 2013; 27:354–360.
Article
219. Shin SH, Ye MK, Kim JK, Cho CH. Histological characteristics of chronic rhinosinusitis with nasal polyps: recent 10-year experience of a single center in Daegu, Korea. Am J Rhinol Allergy. 2014; 28:95–98.
Article
220. Wang W, Gao Y, Zhu Z, Zha Y, Wang X, Qi F, et al. Changes in the clinical and histological characteristics of Chinese chronic rhinosinusitis with nasal polyps over 11 years. Int Forum Allergy Rhinol. 2019; 9:149–157.
Article
221. Jiang WX, Cao PP, Li ZY, Zhai GT, Liao B, Lu X, et al. A retrospective study of changes of histopathology of nasal polyps in adult Chinese in central China. Rhinology. 2019; 57:261–267.
Article
222. Zhang N, Holtappels G, Claeys C, Huang G, van Cauwenberge P, Bachert C. Pattern of inflammation and impact of Staphylococcus aureus enterotoxins in nasal polyps from southern China. Am J Rhinol. 2006; 20:445–450.
223. Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X, et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med. 2010; 181:315–323.
Article
224. Weatherall M, Shirtcliffe P, Travers J, Beasley R. Use of cluster analysis to define COPD phenotypes. Eur Respir J. 2010; 36:472–474.
Article
225. Zinchuk AV, Jeon S, Koo BB, Yan X, Bravata DM, Qin L, et al. Polysomnographic phenotypes and their cardiovascular implications in obstructive sleep apnoea. Thorax. 2018; 73:472–480.
Article
226. Nakayama T, Asaka D, Yoshikawa M, Okushi T, Matsuwaki Y, Moriyama H, et al. Identification of chronic rhinosinusitis phenotypes using cluster analysis. Am J Rhinol Allergy. 2012; 26:172–176.
Article
227. Lou H, Meng Y, Piao Y, Zhang N, Bachert C, Wang C, et al. Cellular phenotyping of chronic rhinosinusitis with nasal polyps. Rhinology. 2016; 54:150–159.
Article
228. Wang X, Zhang N, Bo M, Holtappels G, Zheng M, Lou H, et al. Diversity of TH cytokine profiles in patients with chronic rhinosinusitis: a multicenter study in Europe, Asia, and Oceania. J Allergy Clin Immunol. 2016; 138:1344–1353.
229. Liao B, Liu JX, Li ZY, Zhen Z, Cao PP, Yao Y, et al. Multidimensional endotypes of chronic rhinosinusitis and their association with treatment outcomes. Allergy. 2018; 73:1459–1469.
Article
230. Turner JH, Chandra RK, Li P, Bonnet K, Schlundt DG. Identification of clinically relevant chronic rhinosinusitis endotypes using cluster analysis of mucus cytokines. J Allergy Clin Immunol. 2018; 141:1895–1897.e7.
Article
231. Kim DK, Kang SI, Kong IG, Cho YH, Song SK, Hyun SJ, et al. Two-track medical treatment strategy according to the clinical scoring system for chronic rhinosinusitis. Allergy Asthma Immunol Res. 2018; 10:490–502.
Article
232. Wenzel S, Ford L, Pearlman D, Spector S, Sher L, Skobieranda F, et al. Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med. 2013; 368:2455–2466.
Article
233. Krug N, Hohlfeld JM, Kirsten AM, Kornmann O, Beeh KM, Kappeler D, et al. Allergen-induced asthmatic responses modified by a GATA3-specific DNAzyme. N Engl J Med. 2015; 372:1987–1995.
Article
234. Nair P, Gaga M, Zervas E, Alagha K, Hargreave FE, O'Byrne PM, et al. Safety and efficacy of a CXCR2 antagonist in patients with severe asthma and sputum neutrophils: a randomized, placebo-controlled clinical trial. Clin Exp Allergy. 2012; 42:1097–1103.
Article
235. O'Byrne PM, Metev H, Puu M, Richter K, Keen C, Uddin M, et al. Efficacy and safety of a CXCR2 antagonist, AZD5069, in patients with uncontrolled persistent asthma: a randomised, double-blind, placebo-controlled trial. Lancet Respir Med. 2016; 4:797–806.
236. Busse WW, Holgate S, Kerwin E, Chon Y, Feng J, Lin J, et al. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med. 2013; 188:1294–1302.
Article
237. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015; 372:793–795.
Article
238. Bachert C, Zhang L, Gevaert P. Current and future treatment options for adult chronic rhinosinusitis: focus on nasal polyposis. J Allergy Clin Immunol. 2015; 136:1431–1440.
Article
239. De Greve G, Hellings PW, Fokkens WJ, Pugin B, Steelant B, Seys SF. Endotype-driven treatment in chronic upper airway diseases. Clin Transl Allergy. 2017; 7:22.
Article
240. Lim M, Lew-Gor S, Darby Y, Brookes N, Scadding G, Lund VJ. The relationship between subjective assessment instruments in chronic rhinosinusitis. Rhinology. 2007; 45:144–147.
241. Ryan WR, Ramachandra T, Hwang PH. Correlations between symptoms, nasal endoscopy, and in-office computed tomography in post-surgical chronic rhinosinusitis patients. Laryngoscope. 2011; 121:674–678.
Article
242. Zhang L, Tao JH, Han DM, Ge WT, Zhou B, Wang XZ, et al. Spiral computed tomography analysis of fronto-ethmoidal cells in normal subjects. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2007; 42:898–903.
243. Zinreich SJ. Imaging of chronic sinusitis in adults: X-ray, computed tomography, and magnetic resonance imaging. J Allergy Clin Immunol. 1992; 90:445–451.
Article
244. Mossa-Basha M, Ilica AT, Maluf F, Karakoç Ö, Izbudak I, Aygün N. The many faces of fungal disease of the paranasal sinuses: CT and MRI findings. Diagn Interv Radiol. 2013; 19:195–200.
Article
245. Lund VJ, Kennedy DW. Staging for rhinosinusitis. Otolaryngol Head Neck Surg. 1997; 117:S35–40.
Article
246. Ishitoya J, Sakuma Y, Tsukuda M. Eosinophilic chronic rhinosinusitis in Japan. Allergol Int. 2010; 59:239–245.
Article
247. Meng Y, Lou H, Wang C, Zhang L. Predictive significance of computed tomography in eosinophilic chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol. 2016; 6:812–819.
Article
248. Marple BF. Allergic fungal rhinosinusitis: current theories and management strategies. Laryngoscope. 2001; 111:1006–1019.
Article
249. She W, Yang J, Wang C, Zhang L. Diagnostic value of nasal cytology in chronic rhinosinusitis assessed by a liquid-based cytological technique. Am J Rhinol Allergy. 2018; 32:181–187.
Article
250. Jankowski R, Persoons M, Foliguet B, Coffinet L, Thomas C, Verient-Montaut B. Eosinophil count in nasal secretions of subjects with and without nasal symptoms. Rhinology. 2000; 38:23–32.
251. Gelardi M, Cassano P, Fiorella ML, Luperto P, Fiorella R. The cytological research in nasal polyposis. Int Congr Ser. 2003; 1240:1087–1089.
Article
252. Gelardi M, Fiorella ML, Leo G, Incorvaia C. Cytology in the diagnosis of rhinosinusitis. Pediatr Allergy Immunol. 2007; 18:Suppl 18. 50–52.
Article
253. Pant H, Kette FE, Smith WB, Macardle PJ, Wormald PJ. Eosinophilic mucus chronic rhinosinusitis: clinical subgroups or a homogeneous pathogenic entity? Laryngoscope. 2006; 116:1241–1247.
Article
254. Bent JP 3rd, Kuhn FA. Diagnosis of allergic fungal sinusitis. Otolaryngol Head Neck Surg. 1994; 111:580–588.
Article
255. Wise SK, Ghegan MD, Gorham E, Schlosser RJ. Socioeconomic factors in the diagnosis of allergic fungal rhinosinusitis. Otolaryngol Head Neck Surg. 2008; 138:38–42.
Article
256. Xu R, Ma L, Xu G. Diagnosis and treatment of allergic fungal rhinosinusitis. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2016; 51:635–640.
257. Hoyt AE, Borish L, Gurrola J, Payne S. Allergic fungal rhinosinusitis. J Allergy Clin Immunol Pract. 2016; 4:599–604.
Article
258. Thompson GR 3rd, Patterson TF. Fungal disease of the nose and paranasal sinuses. J Allergy Clin Immunol. 2012; 129:321–326.
Article
259. Uri N, Ronen O, Marshak T, Parpara O, Nashashibi M, Gruber M. Allergic fungal sinusitis and eosinophilic mucin rhinosinusitis: diagnostic criteria. J Laryngol Otol. 2013; 127:867–871.
Article
260. Zhou B, Liu M, Han DM, Wang ZC, Zhang L, Xian JF, et al. Characteristics of computed tomography of allergic fungal sinusitis. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2006; 41:493–496.
261. Hu CH, Wei HZ, He S, Liu X, Li YC. Imaging charateristics of bony erosion and fungal culture analysis in allergic fungal rhinosinusitis. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2017; 31:1824–1827. 1832
262. Chaaban MR, Walsh EM, Woodworth BA. Epidemiology and differential diagnosis of nasal polyps. Am J Rhinol Allergy. 2013; 27:473–478.
Article
263. Braun H, Buzina W, Freudenschuss K, Beham A, Stammberger H. ‘Eosinophilic fungal rhinosinusitis’: a common disorder in Europe? Laryngoscope. 2003; 113:264–269.
Article
264. Pant H, Kette FE, Smith WB, Wormald PJ, Macardle PJ. Fungal-specific humoral response in eosinophilic mucus chronic rhinosinusitis. Laryngoscope. 2005; 115:601–606.
Article
265. Guo C, Ghadersohi S, Kephart GM, Laine RA, Sherris DA, Kita H, et al. Improving the detection of fungi in eosinophilic mucin: seeing what we could not see before. Otolaryngol Head Neck Surg. 2012; 147:943–949.
266. Samter M, Beers RF Jr. Intolerance to aspirin. Clinical studies and consideration of its pathogenesis. Ann Intern Med. 1968; 68:975–983.
267. Rajan JP, Wineinger NE, Stevenson DD, White AA. Prevalence of aspirin-exacerbated respiratory disease among asthmatic patients: a meta-analysis of the literature. J Allergy Clin Immunol. 2015; 135:676–681.e1.
268. Fan Y, Feng S, Xia W, Qu L, Li X, Chen S, et al. Aspirin-exacerbated respiratory disease in China: a cohort investigation and literature review. Am J Rhinol Allergy. 2012; 26:e20–2.
Article
269. Jenkins C, Costello J, Hodge L. Systematic review of prevalence of aspirin induced asthma and its implications for clinical practice. BMJ. 2004; 328:434.
Article
270. White AA. An update on the epidemiology of aspirin-exacerbated respiratory disease. Am J Rhinol Allergy. 2017; 31:299–301.
Article
271. Stevens WW, Schleimer RP. Aspirin-exacerbated respiratory disease as an endotype of chronic rhinosinusitis. Immunol Allergy Clin North Am. 2016; 36:669–680.
Article
272. Moteki H, Yasuo M, Hamano H, Uehara T, Usami S. IgG4-related chronic rhinosinusitis: a new clinical entity of nasal disease. Acta Otolaryngol. 2011; 131:518–526.
Article
273. Fujita A, Sakai O, Chapman MN, Sugimoto H. IgG4-related disease of the head and neck: CT and MR imaging manifestations. Radiographics. 2012; 32:1945–1958.
Article
274. Horger M, Lamprecht HG, Bares R, Spira D, Schmalzing M, Claussen CD, et al. Systemic IgG4-related sclerosing disease: spectrum of imaging findings and differential diagnosis. AJR Am J Roentgenol. 2012; 199:W276–W282.
Article
275. Deshpande V, Zen Y, Chan JK, Yi EE, Sato Y, Yoshino T, et al. Consensus statement on the pathology of IgG4-related disease. Mod Pathol. 2012; 25:1181–1192.
276. Piao Y, Wang C, Yu W, Mao M, Yue C, Liu H, et al. Concomitant occurrence of Mikulicz's disease and immunoglobulin G4-related chronic rhinosinusitis: a clinicopathological study of 12 cases. Histopathology. 2016; 68:502–512.
Article
277. Piao Y, Zhang Y, Yue C, Wang C, Zhang L. Immunoglobulin G4-related chronic rhinosinusitis: a pitfall in the differential diagnosis of granulomatosis with polyangiitis, Rosai-Dorfman disease, and fungal rhinosinusitis. Hum Pathol. 2018; 73:82–88.
Article
278. Sun Q, An L, Zheng J, Zhu D. Advances in recurrence and malignant transformation of sinonasal inverted papillomas. Oncol Lett. 2017; 13:4585–4592.
Article
279. Cui N, An LF, Zhu DD. Surgical management of huge nasopharyngeal pleomorphic adenoma two cases. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2010; 45:603–604.
280. Xindong F, Minjun D, Runjie S, Peihua W, Dehui W. Adjunctive embolization for juvenile nasopharyngeal angiofibroma. Zhonghua Fang She Xue Za Zhi. 2006; 40:1197–1199.
281. Sunaryo PL, Svider PF, Husain Q, Choudhry OJ, Eloy JA, Liu JK. Schwannomas of the sinonasal tract and anterior skull base: a systematic review of 94 cases. Am J Rhinol Allergy. 2014; 28:39–39.
Article
282. Li H, Peng X, Li J, Yang K. A rare solitary neurofibroma of the frontal sinus. J Craniofac Surg. 2014; 25:1542–1544.
Article
283. Zhang YI, Teng WQ, Chen XP, Wu J. Ectopic meningioma in the bilateral nasal olfactory cleft: a case report and literature review. Oncol Lett. 2015; 9:1743–1746.
Article
284. She CP, Ma FM, Tong YF. Ala nasal leiomyoma misdiagnosed as nasal vestibular cyst: a case report. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2012; 47:154.
285. Zhao J, Zhang H, Zhang J, Pi Y, Xu M.. Angioleiomyoma with mature adipocytes of nasal vestibule: report of a case. Zhonghua Bing Li Xue Za Zhi. 2015; 44:288–289.
286. Chen NX, Zhang XX, Chen L, Wang JL, Yan F, Ma L. Clinical analysis of multimodal treatment for orbital organ preservation in T4b squamous cell carcinoma of nasal cavity and paranasal sinuses. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2016; 51:497–503.
287. Fokkens WJ, Lund VJ, Mullol J, Bachert C, Alobid I, Baroody F, et al. EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology. 2012; 50:1–12.
Article
288. Hissaria P, Smith W, Wormald PJ, Taylor J, Vadas M, Gillis D, et al. Short course of systemic corticosteroids in sinonasal polyposis: a double-blind, randomized, placebo-controlled trial with evaluation of outcome measures. J Allergy Clin Immunol. 2006; 118:128–133.
Article
289. Vaidyanathan S, Barnes M, Williamson P, Hopkinson P, Donnan PT, Lipworth B. Treatment of chronic rhinosinusitis with nasal polyposis with oral steroids followed by topical steroids: a randomized trial. Ann Intern Med. 2011; 154:293–302.
290. Orlandi RR, Kingdom TT, Hwang PH, Smith TL, Alt JA, Baroody FM, et al. International consensus statement on allergy and rhinology: rhinosinusitis. Int Forum Allergy Rhinol. 2016; 6:Suppl 1. S22–S209.
291. Bachert C, Pawankar R, Zhang L, Bunnag C, Fokkens WJ, Hamilos DL, et al. ICON: chronic rhinosinusitis. World Allergy Organ J. 2014; 7:25.
Article
292. Bensch GW. Safety of intranasal corticosteroids. Ann Allergy Asthma Immunol. 2016; 117:601–605.
Article
293. Skoner DP, Gentile D, Angelini B, Kane R, Birdsall D, Banerji D. The effects of intranasal triamcinolone acetonide and intranasal fluticasone propionate on short-term bone growth and HPA axis in children with allergic rhinitis. Ann Allergy Asthma Immunol. 2003; 90:56–62.
Article
294. Wang C, Lou H, Wang X, Wang Y, Fan E, Li Y, et al. Effect of budesonide transnasal nebulization in patients with eosinophilic chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2015; 135:922–929.e6.
Article
295. Steinke JW, Payne SC, Tessier ME, Borish LO, Han JK, Borish LC. Pilot study of budesonide inhalant suspension irrigations for chronic eosinophilic sinusitis. J Allergy Clin Immunol. 2009; 124:1352–1354.e7.
Article
296. Wen W, Liu W, Zhang L, Bai J, Fan Y, Xia W, et al. Increased neutrophilia in nasal polyps reduces the response to oral corticosteroid therapy. J Allergy Clin Immunol. 2012; 129:1522–1528.e5.
Article
297. Milara J, Peiró T, Armengot M, Frias S, Morell A, Serrano A, et al. Mucin 1 downregulation associates with corticosteroid resistance in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2015; 135:470–476.
Article
298. Milara J, Morell A, Ballester B, Armengot M, Morcillo E, Cortijo J. MUC4 impairs the anti-inflammatory effects of corticosteroids in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2017; 139:855–862.e13.
Article
299. Aminov R. History of antimicrobial drug discovery: major classes and health impact. Biochem Pharmacol. 2017; 133:4–19.
Article
300. Bearden DT, Rodvold KA. Penetration of macrolides into pulmonary sites of infection. Infect Med. 1999; 16:480–484A.
301. Suzaki H, Sugita K, Kudoh S, Oritsu S, Kurashima A, Nagai H. The effects of low-dose long-term erythromycin administration treatment on chronic rhinosinusitis complicated by diffuse panbronchiolitis. Ther Res. 1990; 11:29–31.
302. Cervin A, Wallwork B. Macrolide therapy of chronic rhinosinusitis. Rhinology. 2007; 45:259–267.
303. Nonaka M, Pawankar R, Saji F, Yagi T. Effect of roxithromycin on IL-8 synthesis and proliferation of nasal polyp fibroblasts. Acta Otolaryngol Suppl. 1998; 539:71–75.
304. Akamatsu H, Yamawaki M, Horio T. Effects of roxithromycin on adhesion molecules expressed on endothelial cells of the dermal microvasculature. J Int Med Res. 2001; 29:523–527.
Article
305. Matsuoka N, Eguchi K, Kawakami A, Tsuboi M, Kawabe Y, Aoyagi T, et al. Inhibitory effect of clarithromycin on costimulatory molecule expression and cytokine production by synovial fibroblast-like cells. Clin Exp Immunol. 1996; 104:501–508.
Article
306. Shimizu T, Suzaki H. Past, present and future of macrolide therapy for chronic rhinosinusitis in Japan. Auris Nasus Larynx. 2016; 43:131–136.
Article
307. Fokkens W, Lund V, Mullol J. European Position Paper on Rhinosinusitis and Nasal Polyps group. European position paper on rhinosinusitis and nasal polyps 2007. Rhinol Suppl. 2007; 20:1–136.
308. Wallwork B, Coman W, Mackay-Sim A, Greiff L, Cervin A. A double-blind, randomized, placebo-controlled trial of macrolide in the treatment of chronic rhinosinusitis. Laryngoscope. 2006; 116:189–193.
Article
309. Videler WJ, Badia L, Harvey RJ, Gane S, Georgalas C, van der Meulen FW, et al. Lack of efficacy of long-term, low-dose azithromycin in chronic rhinosinusitis: a randomized controlled trial. Allergy. 2011; 66:1457–1468.
Article
310. Zeng M, Long XB, Cui YH, Liu Z. Comparison of efficacy of mometasone furoate versus clarithromycin in the treatment of chronic rhinosinusitis without nasal polyps in Chinese adults. Am J Rhinol Allergy. 2011; 25:e203–7.
Article
311. Luo Q, Chen F, Liu W, Li Z, Xu R, Fan Y, et al. Evaluation of long-term clarithromycin treatment in adult Chinese patients with chronic rhinosinusitis without nasal polyps. ORL J Otorhinolaryngol Relat Spec. 2011; 73:206–211.
Article
312. Perić A, Baletić N, Milojević M, Sotirović J, Živić L, Perić AV, et al. Effects of preoperative clarithromycin administration in patients with nasal polyposis. West Indian Med J. 2014; 63:721–727.
Article
313. Haruna S, Shimada C, Ozawa M, Fukami S, Moriyama H. A study of poor responders for long-term, low-dose macrolide administration for chronic sinusitis. Rhinology. 2009; 47:66–71.
314. Varvyanskaya A, Lopatin A. Efficacy of long-term low-dose macrolide therapy in preventing early recurrence of nasal polyps after endoscopic sinus surgery. Int Forum Allergy Rhinol. 2014; 4:533–541.
Article
315. Yamada T, Fujieda S, Mori S, Yamamoto H, Saito H. Macrolide treatment decreased the size of nasal polyps and IL-8 levels in nasal lavage. Am J Rhinol. 2000; 14:143–148.
Article
316. Geng X. Low-dosed, long-termed macrolides for treating chronic rhinosinusitis. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2013; 2:48.
317. Shen S, Lou H, Wang C, Zhang L. Macrolide antibiotics in the treatment of chronic rhinosinusitis: evidence from a meta-analysis. J Thorac Dis. 2018; 10:5913–5923.
Article
318. Namyslowski G, Misiolek M, Czecior E, Malafiej E, Orecka B, Namyslowski P, et al. Comparison of the efficacy and tolerability of amoxycillin/clavulanic acid 875 mg b.i.d. with cefuroxime 500 mg b.i.d. in the treatment of chronic and acute exacerbation of chronic sinusitis in adults. J Chemother. 2002; 14:508–517.
319. Legent F, Bordure P, Beauvillain C, Berche P. A double-blind comparison of ciprofloxacin and amoxycillin/clavulanic acid in the treatment of chronic sinusitis. Chemotherapy. 1994; 40:Suppl 1. 8–15.
320. Head K, Chong LY, Piromchai P, Hopkins C, Philpott C, Schilder AG, et al. Systemic and topical antibiotics for chronic rhinosinusitis. Cochrane Database Syst Rev. 2016; 4:CD011994.
Article
321. Sacks PL, Harvey RJ, Rimmer J, Gallagher RM, Sacks R. Topical and systemic antifungal therapy for the symptomatic treatment of chronic rhinosinusitis. Cochrane Database Syst Rev. 2011; CD008263.
Article
322. Pérez-Novo CA, Claeys C, Van Zele T, Holtapples G, Van Cauwenberge P, Bachert C. Eicosanoid metabolism and eosinophilic inflammation in nasal polyp patients with immune response to Staphylococcus aureus enterotoxins. Am J Rhinol. 2006; 20:456–460.
323. Wu X, Hong H, Zuo K, Han M, Li J, Wen W, et al. Expression of leukotriene and its receptors in eosinophilic chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol. 2016; 6:75–81.
Article
324. Chen K, Yu Z, Yang J, Li H. Expression of cysteinyl leukotriene receptor GPR17 in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Asian Pac J Allergy Immunol. 2018; 36:93–100.
Article
325. Schäper C, Noga O, Koch B, Ewert R, Felix SB, Gläser S, et al. Anti-inflammatory properties of montelukast, a leukotriene receptor antagonist in patients with asthma and nasal polyposis. J Investig Allergol Clin Immunol. 2011; 21:51–58.
326. Pauli C, Fintelmann R, Klemens C, Hilgert E, Jund F, Rasp G, et al. Polyposis nasi--improvement in quality of life by the influence of leukotrien receptor antagonists. Laryngorhinootologie. 2007; 86:282–286.
327. Du J, Ba L, Zhou J, Yu L, Liu R, Zhang J, et al. The role of cysteinyl leukotrienes and their receptors in refractory nasal polyps. Prostaglandins Leukot Essent Fatty Acids. 2017; 126:39–48.
Article
328. Stewart RA, Ram B, Hamilton G, Weiner J, Kane KJ. Montelukast as an adjunct to oral and inhaled steroid therapy in chronic nasal polyposis. Otolaryngol Head Neck Surg. 2008; 139:682–687.
Article
329. Kieff DA, Busaba NY. Efficacy of montelukast in the treatment of nasal polyposis. Ann Otol Rhinol Laryngol. 2005; 114:941–945.
Article
330. Nonaka M, Sakanushi A, Kusama K, Ogihara N, Yagi T. One-year evaluation of combined treatment with an intranasal corticosteroid and montelukast for chronic rhinosinusitis associated with asthma. J Nippon Med Sch. 2010; 77:21–28.
Article
331. Yazıcı ZM, Sayın I, Bozkurt E, Kayhan FT. Effect of montelukast on quality of life in subjects with nasal polyposis accompanying bronchial asthma. Kulak Burun Bogaz Ihtis Derg. 2011; 21:210–214.
Article
332. Wentzel JL, Soler ZM, DeYoung K, Nguyen SA, Lohia S, Schlosser RJ. Leukotriene antagonists in nasal polyposis: a meta-analysis and systematic review. Am J Rhinol Allergy. 2013; 27:482–489.
Article
333. Vuralkan E, Saka C, Akin I, Hucumenoglu S, Unal BU, Kuran G, et al. Comparison of montelukast and mometasone furoate in the prevention of recurrent nasal polyps. Ther Adv Respir Dis. 2012; 6:5–10.
Article
334. Van Gerven L, Langdon C, Cordero A, Cardelús S, Mullol J, Alobid I. Lack of long-term add-on effect by montelukast in postoperative chronic rhinosinusitis patients with nasal polyps. Laryngoscope. 2018; 128:1743–1751.
Article
335. Simons FE, Simons KJ. Histamine and H1-antihistamines: celebrating a century of progress. J Allergy Clin Immunol. 2011; 128:1139–1150.e4.
Article
336. Mullol J, de Borja Callejas F, Martínez-Antón MA, Méndez-Arancibia E, Alobid I, Pujols L, et al. Mometasone and desloratadine additive effect on eosinophil survival and cytokine secretion from epithelial cells. Respir Res. 2011; 12:23.
Article
337. März RW, Ismail C, Popp MA. Profile and effectiveness of a phytogenic combination preparation for treatment of sinusitis. Wien Med Wochenschr. 1999; 149:202–208.
338. Passali D, Cambi J, Passali FM, Bellussi LM. Phytoneering: a new way of therapy for rhinosinusitis. Acta Otorhinolaryngol Ital. 2015; 35:1–8.
339. Glatthaar-Saalmüller B, Rauchhaus U, Rode S, Haunschild J, Saalmüller A. Antiviral activity in vitro of two preparations of the herbal medicinal product Sinupret® against viruses causing respiratory infections. Phytomedicine. 2011; 19:1–7.
340. Palm J, Steiner I, Abramov-Sommariva D, Ammendola A, Mitzenheim S, Steindl H, et al. Assessment of efficacy and safety of the herbal medicinal product BNO 1016 in chronic rhinosinusitis. Rhinology. 2017; 55:142–151.
Article
341. Guo R, Canter PH, Ernst E. Herbal medicines for the treatment of rhinosinusitis: a systematic review. Otolaryngol Head Neck Surg. 2006; 135:496–506.
Article
342. Huang ZX, Li YX, Wu YB, Liu HC, Zhou B. Preoperative and postoperative medical therapies for chronic rhinosinusitis: national surveys among Chinese otolaryngologists. World J Otorhinolaryngol Head Neck Surg. 2018; 4:258–262.
Article
343. Pritchard S, Glover M, Guthrie G, Brum J, Ramsey D, Kappler G, et al. Effectiveness of 0.05% oxymetazoline (Vicks Sinex Micromist®) nasal spray in the treatment of objective nasal congestion demonstrated to 12 h post-administration by magnetic resonance imaging. Pulm Pharmacol Ther. 2014; 27:121–126.
344. Scadding GK, Durham SR, Mirakian R, Jones NS, Drake-Lee AB, Ryan D, et al. BSACI guidelines for the management of rhinosinusitis and nasal polyposis. Clin Exp Allergy. 2008; 38:260–275.
Article
345. Kirtsreesakul V, Khanuengkitkong T, Ruttanaphol S. Does oxymetazoline increase the efficacy of nasal steroids in treating nasal polyposis? Am J Rhinol Allergy. 2016; 30:195–200.
Article
346. Jurkiewicz D, Zielnik-Jurkiewicz B. Bacterial lysates in the prevention of respiratory tract infections. Otolaryngol Pol. 2018; 72:1–8.
Article
347. Triantafillou V, Workman AD, Patel NN, Maina IW, Tong CC, Kuan EC, et al. Broncho-Vaxom® (OM-85 BV) soluble components stimulate sinonasal innate immunity. Int Forum Allergy Rhinol. 2019; 9:370–377.
Article
348. Zhang Y, Xu Y, Xu Y, Tao Z. Extramedullary plasmacytoma associated with an ectopic tooth in the nasal cavity. Ear Nose Throat J. 2015; 94:E43–6.
349. Heintz B, Schlenter WW, Kirsten R, Nelson K. Clinical efficacy of Broncho-Vaxom in adult patients with chronic purulent sinusitis--a multi-centric, placebo-controlled, double-blind study. Int J Clin Pharmacol Ther Toxicol. 1989; 27:530–534.
350. Chen J, Zhou Y, Nie J, Wang Y, Zhang L, Shi Q, et al. Bacterial lysate for the prevention of chronic rhinosinusitis recurrence in children. J Laryngol Otol. 2017; 131:523–528.
Article
351. Barham HP, Harvey RJ. Nasal saline irrigation: therapeutic or homeopathic. Rev Bras Otorrinolaringol (Engl Ed). 2015; 81:457–458.
Article
352. Friedman M, Hamilton C, Samuelson CG, Maley A, Wilson MN, Venkatesan TK, et al. Dead Sea salt irrigations vs saline irrigations with nasal steroids for symptomatic treatment of chronic rhinosinusitis: a randomized, prospective double-blind study. Int Forum Allergy Rhinol. 2012; 2:252–257.
Article
353. Adappa ND, Wei CC, Palmer JN. Nasal irrigation with or without drugs: the evidence. Curr Opin Otolaryngol Head Neck Surg. 2012; 20:53–57.
354. Lin L, Tang X, Wei J, Dai F, Sun G. Xylitol nasal irrigation in the treatment of chronic rhinosinusitis. Am J Otolaryngol. 2017; 38:383–389.
Article
355. Smith KA, French G, Mechor B, Rudmik L. Safety of long-term high-volume sinonasal budesonide irrigations for chronic rhinosinusitis. Int Forum Allergy Rhinol. 2016; 6:228–232.
Article
356. Harvey R, Hannan SA, Badia L, Scadding G. Nasal saline irrigations for the symptoms of chronic rhinosinusitis. Cochrane Database Syst Rev. 2007; CD006394.
Article
357. Chong LY, Head K, Hopkins C, Philpott C, Glew S, Scadding G, et al. Saline irrigation for chronic rhinosinusitis. Cochrane Database Syst Rev. 2016; CD011995.
Article
358. Gonzalez CD, Petersen MG, Miller M, Park AH, Wilson KF. Complex nontuberculous mycobacterial cervicofacial lymphadenitis: What is the optimal approach? Laryngoscope. 2016; 126:1677–1680.
Article
359. Thamboo A, Manji J, Szeitz A, Santos RD, Hathorn I, Gan EC, et al. The safety and efficacy of short-term budesonide delivered via mucosal atomization device for chronic rhinosinusitis without nasal polyposis. Int Forum Allergy Rhinol. 2014; 4:397–402.
Article
360. Kim ST, Sung UH, Jung JH, Paik JY, Woo JH, Cha HE, et al. The effect of maxillary sinus irrigation on early prognostic factors after endoscopic sinus surgery: a preliminary study. Am J Rhinol Allergy. 2013; 27:e158–61.
Article
361. Kang TW, Chung JH, Cho SH, Lee SH, Kim KR, Jeong JH. The effectiveness of budesonide nasal irrigation after endoscopic sinus surgery in chronic rhinosinusitis with asthma. Clin Exp Otorhinolaryngol. 2017; 10:91–96.
Article
362. Kosugi EM, Moussalem GF, Simões JC, Souza RP, Chen VG, Saraceni Neto P, et al. Topical therapy with high-volume budesonide nasal irrigations in difficult-to-treat chronic rhinosinusitis. Rev Bras Otorrinolaringol (Engl Ed). 2016; 82:191–197.
Article
363. Lund VJ. Maximal medical therapy for chronic rhinosinusitis. Otolaryngol Clin North Am. 2005; 38:1301–1310. [x.].
Article
364. In : Naumann H, editor. Pathologische anatomie der chronischen rhinitis und sinusitis. Proceedings VIII International Congress of Oto-Rhino-Laryngology; 1965 Oct 24–30; Tokyo, Japan. Amsterdam: Excerpta Medica;1965. p. 80.
365. Krings JG, Kallogjeri D, Wineland A, Nepple KG, Piccirillo JF, Getz AE. Complications of primary and revision functional endoscopic sinus surgery for chronic rhinosinusitis. Laryngoscope. 2014; 124:838–845.
Article
366. Zhang X, Ye T, Huang Z, Huang Q, Xian J, Li J, et al. Clinical predictors of frontal ostium restenosis after Draf 3 procedure for refractory chronic rhinosinusitis. Am J Rhinol Allergy. 2018; 32:287–293.
Article
367. Ye T, Hwang PH, Huang Z, Huang Q, Xian J, Li C, et al. Frontal ostium neo-osteogenesis and patency after Draf III procedure: a computer-assisted study. Int Forum Allergy Rhinol. 2014; 4:739–744.
Article
368. Wang MJ, Lin F, Zhang XQ, Zhou B, Cui SJ, Li YC. Analysis of surgical outcomes of functional endoscopic sinus surgery and radical sinus surgery for refractory rhinosinusitis. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2017; 31:185–190.
369. Georgalas C, Hansen F, Videler WJ, Fokkens WJ. Long terms results of Draf type III (modified endoscopic Lothrop) frontal sinus drainage procedure in 122 patients: a single centre experience. Rhinology. 2011; 49:195–201.
Article
370. Zhou B. Interpretation of diagnosis of chronic rhinosinusitis. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2013; 48:96–97.
371. Zhou B, Han DM. Changes of concepts of diagnosis and treatment of chronic rhinosinusitis after clinical practice. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2013; 48:89–91.
372. Chen F, Luo X, Xu R, Deng J, Zuo K, Li H, et al. Evaluation of airway hyperresponsiveness in chronic rhinosinusitis: values of sinus computed tomography. Ann Allergy Asthma Immunol. 2014; 113:609–613.
Article
373. To T, Stanojevic S, Moores G, Gershon AS, Bateman ED, Cruz AA, et al. Global asthma prevalence in adults: findings from the cross-sectional world health survey. BMC Public Health. 2012; 12:204.
Article
374. Batra PS, Kern RC, Tripathi A, Conley DB, Ditto AM, Haines GK 3rd, et al. Outcome analysis of endoscopic sinus surgery in patients with nasal polyps and asthma. Laryngoscope. 2003; 113:1703–1706.
Article
375. Huang Z, Zhou B, Zhang Q, Huang Q, Sun Y, Wang M, et al. The role of upper and lower airway patency in chronic rhinosinusitis with nasal polyps and asthma. Laryngoscope. 2013; 123:569–573.
Article
376. Veloso-Teles R, Cerejeira R. Endoscopic sinus surgery for chronic rhinosinusitis with nasal polyps: Clinical outcome and predictive factors of recurrence. Am J Rhinol Allergy. 2017; 31:56–62.
Article
377. Tokunaga T, Sakashita M, Haruna T, Asaka D, Takeno S, Ikeda H, et al. Novel scoring system and algorithm for classifying chronic rhinosinusitis: the JESREC Study. Allergy. 2015; 70:995–1003.
378. van der Veen J, Seys SF, Timmermans M, Levie P, Jorissen M, Fokkens WJ, et al. Real-life study showing uncontrolled rhinosinusitis after sinus surgery in a tertiary referral centre. Allergy. 2017; 72:282–290.
Article
379. Wu AW, Ting JY, Platt MP, Tierney HT, Metson R. Factors affecting time to revision sinus surgery for nasal polyps: a 25-year experience. Laryngoscope. 2014; 124:29–33.
Article
380. Chen FH, Xu R, Zuo KJ, Guo YB, Li ZP, Shi JB. Efficacy of endoscopic sinus surgery-based on multidisciplinary treatment for chronic rhinosinusitis with asthma. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2011; 46:444–448.
381. Chen FH, Zuo KJ, Guo YB, Li ZP, Xu G, Xu R, et al. Long-term results of endoscopic sinus surgery-oriented treatment for chronic rhinosinusitis with asthma. Laryngoscope. 2014; 124:24–28.
Article
382. Chen FH, Deng J, Hong HY, Xu R, Guo JB, Hou WJ, et al. Extensive versus functional endoscopic sinus surgery for chronic rhinosinusitis with nasal polyps and asthma: a 1-year study. Am J Rhinol Allergy. 2016; 30:143–148.
Article
383. Alsharif S, Jonstam K, van Zele T, Gevaert P, Holtappels G, Bachert C. Endoscopic sinus surgery for type-2 CRS wNP: an endotype-based retrospective study. Laryngoscope. 2019; 129:1286–1292.
Article
384. Subspecialty Group of Rhinology, Editorial Board of Chinese Journal of Otorhinolaryngology Head and Neck Surgery. Subspecialty Group of Rhinology, Society of Otorhinolaryngology Head and Neck Surgery, Chinese Medical Association. Guidelines for diagnosis and treatment of chronic rhinosinusitis (2012, Kunming). Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2013; 48:92–94.
385. Shi JB, Xu G. Perioperative treatment of chronic rhinosinusitis. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2013; 48:111–113.
386. Cashman EC, Macmahon PJ, Smyth D. Computed tomography scans of paranasal sinuses before functional endoscopic sinus surgery. World J Radiol. 2011; 3:199–204.
Article
387. Valentine R, Wormald PJ, Sindwani R. Advances in absorbable biomaterials and nasal packing. Otolaryngol Clin North Am. 2009; 42:813–828.
Article
388. Berlucchi M, Castelnuovo P, Vincenzi A, Morra B, Pasquini E. Endoscopic outcomes of resorbable nasal packing after functional endoscopic sinus surgery: a multicenter prospective randomized controlled study. Eur Arch Otorhinolaryngol. 2009; 266:839–845.
Article
389. Han DM. Pay attention to the standard treatment of chronic rhinosinusitis. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2009; 44:1–2.
390. Dietz de Loos DA, Segboer CL, Gevorgyan A, Fokkens WJ. Disease-specific quality-of-life questionnaires in rhinitis and rhinosinusitis: review and evaluation. Curr Allergy Asthma Rep. 2013; 13:162–170.
Article
391. Piccirillo JF, Merritt MG Jr, Richards ML. Psychometric and clinimetric validity of the 20-item sino-nasal outcome test (SNOT-20). Otolaryngol Head Neck Surg. 2002; 126:41–47.
Article
392. Zhao CQ, Xu G. Evaluation of the treatment efficacy in CRS: how to understand and use it. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2013; 48:115–116.
393. Dalziel K, Stein K, Round A, Garside R, Royle P. Endoscopic sinus surgery for the excision of nasal polyps: a systematic review of safety and effectiveness. Am J Rhinol. 2006; 20:506–519.
Article
394. Hopkins C, Slack R, Lund V, Brown P, Copley L, Browne J. Long-term outcomes from the English national comparative audit of surgery for nasal polyposis and chronic rhinosinusitis. Laryngoscope. 2009; 119:2459–2465.
Article
395. Hopkins C, Browne JP, Slack R, Lund V, Topham J, Reeves B, et al. The national comparative audit of surgery for nasal polyposis and chronic rhinosinusitis. Clin Otolaryngol. 2006; 31:390–398.
Article
396. Terris MH, Davidson TM. Review of published results for endoscopic sinus surgery. Ear Nose Throat J. 1994; 73:574–580.
Article
397. Kennedy JL, Hubbard MA, Huyett P, Patrie JT, Borish L, Payne SC. Sino-nasal outcome test (SNOT-22): a predictor of postsurgical improvement in patients with chronic sinusitis. Ann Allergy Asthma Immunol. 2013; 111:246–251.e2.
Article
398. Hopkins C, Rimmer J, Lund VJ. Does time to endoscopic sinus surgery impact outcomes in chronic rhinosinusitis? Prospective findings from the national comparative audit of surgery for nasal polyposis and chronic rhinosinusitis. Rhinology. 2015; 53:10–17.
Article
399. Soler ZM, Hyer JM, Rudmik L, Ramakrishnan V, Smith TL, Schlosser RJ. Cluster analysis and prediction of treatment outcomes for chronic rhinosinusitis. J Allergy Clin Immunol. 2016; 137:1054–1062.
Article
400. Bachert C. Innovative therapeutic targets in chronic sinusitis with nasal polyps. Braz J Otorhinolaryngol. 2016; 82:251–252.
Article
401. DeConde AS, Mace JC, Levy JM, Rudmik L, Alt JA, Smith TL. Prevalence of polyp recurrence after endoscopic sinus surgery for chronic rhinosinusitis with nasal polyposis. Laryngoscope. 2017; 127:550–555.
Article
402. Tosun F, Arslan HH, Karslioglu Y, Deveci MS, Durmaz A. Relationship between postoperative recurrence rate and eosinophil density of nasal polyps. Ann Otol Rhinol Laryngol. 2010; 119:455–459.
Article
403. Lou H, Meng Y, Piao Y, Wang C, Zhang L, Bachert C. Predictive significance of tissue eosinophilia for nasal polyp recurrence in the Chinese population. Am J Rhinol Allergy. 2015; 29:350–356.
Article
404. Yao Y, Xie S, Yang C, Zhang J, Wu X, Sun H. Biomarkers in the evaluation and management of chronic rhinosinusitis with nasal polyposis. Eur Arch Otorhinolaryngol. 2017; 274:3559–3566.
Article
405. Matsuwaki Y, Ookushi T, Asaka D, Mori E, Nakajima T, Yoshida T, et al. Chronic rhinosinusitis: risk factors for the recurrence of chronic rhinosinusitis based on 5-year follow-up after endoscopic sinus surgery. Int Arch Allergy Immunol. 2008; 146:Suppl 1. 77–81.
Article
406. Grgić MV, Ćupić H, Kalogjera L, Baudoin T. Surgical treatment for nasal polyposis: predictors of outcome. Eur Arch Otorhinolaryngol. 2015; 272:3735–3743.
Article
407. Brescia G, Barion U, Zanotti C, Giacomelli L, Martini A, Marioni G. The prognostic role of serum eosinophil and basophil levels in sinonasal polyposis. Int Forum Allergy Rhinol. 2017; 7:261–267.
Article
408. Ramakrishnan VR, Hauser LJ, Feazel LM, Ir D, Robertson CE, Frank DN. Sinus microbiota varies among chronic rhinosinusitis phenotypes and predicts surgical outcome. J Allergy Clin Immunol. 2015; 136:334–342.e1.
Article
409. Tsou YA, Chen CM, Lin TC, Hu FW, Tai CJ, Chen HC, et al. Decreased SPLUNC1 expression is associated with Pseudomonas infection in surgically treated chronic rhinosinusitis patients who may require repeated sinus surgery. Laryngoscope. 2013; 123:845–851.
410. Lin H, Boesel KM, Griffith DT, Prussin C, Foster B, Romero FA, et al. Omalizumab rapidly decreases nasal allergic response and FcepsilonRI on basophils. J Allergy Clin Immunol. 2004; 113:297–302.
411. Vennera MC, Picado C, Mullol J, Alobid I, Bernal-Sprekelsen M. Efficacy of omalizumab in the treatment of nasal polyps. Thorax. 2011; 66:824–825.
Article
412. Penn R, Mikula S. The role of anti-IgE immunoglobulin therapy in nasal polyposis: a pilot study. Am J Rhinol. 2007; 21:428–432.
Article
413. Pinto JM, Mehta N, DiTineo M, Wang J, Baroody FM, Naclerio RM. A randomized, double-blind, placebo-controlled trial of anti-IgE for chronic rhinosinusitis. Rhinology. 2010; 48:318–324.
Article
414. Arm JP, Bottoli I, Skerjanec A, Floch D, Groenewegen A, Maahs S, et al. Pharmacokinetics, pharmacodynamics and safety of QGE031 (ligelizumab), a novel high-affinity anti-IgE antibody, in atopic subjects. Clin Exp Allergy. 2014; 44:1371–1385.
415. Gauvreau GM, Harris JM, Boulet LP, Scheerens H, Fitzgerald JM, Putnam WS, et al. Targeting membrane-expressed IgE B cell receptor with an antibody to the M1 prime epitope reduces IgE production. Sci Transl Med. 2014; 6:243ra85.
Article
416. Gevaert P, Lang-Loidolt D, Lackner A, Stammberger H, Staudinger H, Van Zele T, et al. Nasal IL-5 levels determine the response to anti-IL-5 treatment in patients with nasal polyps. J Allergy Clin Immunol. 2006; 118:1133–1141.
Article
417. Bleecker ER, FitzGerald JM, Chanez P, Papi A, Weinstein SF, Barker P, et al. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β2-agonists (SIROCCO): a randomised, multicentre, placebo-controlled phase 3 trial. Lancet. 2016; 388:2115–2127.
418. Ul-Haq Z, Naz S, Mesaik MA. Interleukin-4 receptor signaling and its binding mechanism: a therapeutic insight from inhibitors tool box. Cytokine Growth Factor Rev. 2016; 32:3–15.
Article
419. Wenzel SE, Jayawardena S, Graham NM, Pirozzi G, Teper A. Severe asthma and asthma-chronic obstructive pulmonary disease syndrome - Authors' reply. Lancet. 2016; 388:2742.
Article
420. Simpson EL, Bieber T, Guttman-Yassky E, Beck LA, Blauvelt A, Cork MJ, et al. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N Engl J Med. 2016; 375:2335–2348.
Article
421. Macauley MS, Crocker PR, Paulson JC. Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol. 2014; 14:653–666.
Article
422. Watelet JB, Claeys C, Perez-Novo C, Gevaert P, Van Cauwenberge P, Bachert C. Transforming growth factor beta1 in nasal remodeling: differences between chronic rhinosinusitis and nasal polyposis. Am J Rhinol. 2004; 18:267–272.
423. Liu Z, Lu X, Wang H, Gao Q, Cui Y. The up-regulated expression of tenascin C in human nasal polyp tissues is related to eosinophil-derived transforming growth factor beta1. Am J Rhinol. 2006; 20:629–633.
424. Wang LF, Chien CY, Chiang FY, Chai CY, Tai CF. Expression of matrix metalloproteinase-2 and matrix metalloproteinase-9 in recurrent chronic rhinosinusitis with nasal polyposis. Kaohsiung J Med Sci. 2013; 29:26–31.
Article
425. Shimizu S, Gabazza EC, Ogawa T, Tojima I, Hoshi E, Kouzaki H, et al. Role of thrombin in chronic rhinosinusitis-associated tissue remodeling. Am J Rhinol Allergy. 2011; 25:7–11.
Article
426. Shimizu S, Ogawa T, Takezawa K, Tojima I, Kouzaki H, Shimizu T. Tissue factor and tissue factor pathway inhibitor in nasal mucosa and nasal secretions of chronic rhinosinusitis with nasal polyp. Am J Rhinol Allergy. 2015; 29:235–242.
Article
427. Coste A, Wang QP, Roudot-Thoraval F, Chapelin C, Bedbeder P, Poron F, et al. Epithelial cell proliferation in nasal polyps could be up-regulated by platelet-derived growth factor. Laryngoscope. 1996; 106:578–583.
Article
428. Hu KH, Lee FP, Cheng YJ, Huang HM. Vascular endothelial growth factor and children featuring nasal polyps. Int J Pediatr Otorhinolaryngol. 2007; 71:23–28.
Article
429. Kouzaki H, Seno S, Fukui J, Owaki S, Shimizu T. Role of platelet-derived growth factor in airway remodeling in rhinosinusitis. Am J Rhinol Allergy. 2009; 23:273–280.
Article
430. Lee HS, Myers A, Kim J. Vascular endothelial growth factor drives autocrine epithelial cell proliferation and survival in chronic rhinosinusitis with nasal polyposis. Am J Respir Crit Care Med. 2009; 180:1056–1067.
Article
431. Bayar Muluk N, Arıkan OK, Atasoy P, Kılıç R, Tuna Yalçinozan E. The role of platelet-derived growth factor in the pathogenesis of sinonasal polyps: immunohistochemical assessment in epithelial, subepithelial and deep layers of the mucosa. Clin Exp Otorhinolaryngol. 2013; 6:152–160.
Article
432. Lin H, Lin D, Xiong XS, Dai XX, Lin T. Role of platelet-derived growth factor-α in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol. 2014; 4:909–914.
Article
433. Hu S, You X, Chen C, Liu Z, Cui Y. The expression of VEGF and the regulation of clarithromycin on it in chronic rhinosinusitis with nasal polys. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2014; 28:303–305.
434. Li J, Zheng CQ, Li Y, Yang C, Lin H, Duan HG. Hepatocyte growth factor gene-modified mesenchymal stem cells augment sinonasal wound healing. Stem Cells Dev. 2015; 24:1817–1830.
Article
435. Sha M, Li Y, Li J. The balance of HGF and TGF-β1 in the remodeling of chronic rhinosinusitis. Chin J Gen Pract. 2017; 15:663–666.
436. Azizzadeh Delshad A, Jalali Nadoushan M, Davati A, Rostami A. Expression of vascular endothelial growth factor in nasal polyp and chronic rhinosinusitis. Iran J Pathol. 2016; 11:231–237.
Full Text Links
  • AAIR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr