1. Duran JM, Makarewich CA, Sharp TE, Starosta T, Zhu F, Hoffman NE, Chiba Y, Madesh M, Berretta RM, Kubo H, Houser SR. Bone-derived stem cells repair the heart after myocardial infarction through transdifferentiation and paracrine signaling mechanisms. Circ Res. 2013; 113:539–552. DOI:
10.1161/CIRCRESAHA.113.301202. PMID:
23801066. PMCID:
PMC3822430.
Article
3. Elahi KC, Klein G, Avci-Adali M, Sievert KD, MacNeil S, Aicher WK. Human mesenchymal stromal cells from different sources diverge in their expression of cell surface proteins and display distinct differentiation patterns. Stem Cells Int. 2016; 2016:5646384. DOI:
10.1155/2016/5646384. PMID:
26770208. PMCID:
PMC4684891.
Article
4. Pandey AC, Lancaster JJ, Harris DT, Goldman S, Juneman E. Cellular therapeutics for heart failure: focus on mesenchymal stem cells. Stem Cells Int. 2017; 2017:9640108. DOI:
10.1155/2017/9640108. PMID:
29391871. PMCID:
PMC5748110.
Article
5. Afzal MR, Samanta A, Shah ZI, Jeevanantham V, Abdel-Latif A, Zuba-Surma EK, Dawn B. Adult bone marrow cell therapy for ischemic heart disease: evidence and insights from randomized controlled trials. Circ Res. 2015; 117:558–575. DOI:
10.1161/CIRCRESAHA.114.304792. PMID:
26160853. PMCID:
PMC4553075.
Article
6. Martin-Rendon E, Sweeney D, Lu F, Girdlestone J, Navarrete C, Watt SM. 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sang. 2008; 95:137–148. DOI:
10.1111/j.1423-0410.2008.01076.x. PMID:
18557828.
Article
7. Stolzing A, Jones E, McGonagle D, Scutt A. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev. 2008; 129:163–173. DOI:
10.1016/j.mad.2007.12.002. PMID:
18241911.
Article
8. Fan M, Chen W, Liu W, Du GQ, Jiang SL, Tian WC, Sun L, Li RK, Tian H. The effect of age on the efficacy of human mesenchymal stem cell transplantation after a myocardial infarction. Rejuvenation Res. 2010; 13:429–438. DOI:
10.1089/rej.2009.0986. PMID:
20583954.
Article
9. Loukogeorgakis SP, De Coppi P. Concise review: amniotic fluid stem cells: the known, the unknown, and potential regenerative medicine applications. Stem Cells. 2017; 35:1663–1673. DOI:
10.1002/stem.2553. PMID:
28009066.
Article
10. Antonucci I, Stuppia L, Kaneko Y, Yu S, Tajiri N, Bae EC, Chheda SH, Weinbren NL, Borlongan CV. Amniotic fluid as a rich source of mesenchymal stromal cells for transplantation therapy. Cell Transplant. 2011; 20:789–795. DOI:
10.3727/096368910X539074. PMID:
21054947.
Article
11. Savickiene J, Treigyte G, Baronaite S, Valiuliene G, Kaupinis A, Valius M, Arlauskiene A, Navakauskiene R. Human amniotic fluid mesenchymal stem cells from second- and third-trimester amniocentesis: differentiation potential, molecular signature, and proteome analysis. Stem Cells Int. 2015; 2015:319238. DOI:
10.1155/2015/319238. PMID:
26351462. PMCID:
PMC4553339.
Article
12. Roubelakis MG, Pappa KI, Bitsika V, Zagoura D, Vlahou A, Papadaki HA, Antsaklis A, Anagnou NP. Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells Dev. 2007; 16:931–952. DOI:
10.1089/scd.2007.0036. PMID:
18047393.
Article
13. Zheng YB, Gao ZL, Xie C, Zhu HP, Peng L, Chen JH, Chong YT. Characterization and hepatogenic differentiation of mesenchymal stem cells from human amniotic fluid and human bone marrow: a comparative study. Cell Biol Int. 2008; 32:1439–1448. DOI:
10.1016/j.cellbi.2008.08.015. PMID:
18782626.
Article
14. Yan ZJ, Hu YQ, Zhang HT, Zhang P, Xiao ZY, Sun XL, Cai YQ, Hu CC, Xu RX. Comparison of the neural differentiation potential of human mesenchymal stem cells from amniotic fluid and adult bone marrow. Cell Mol Neurobiol. 2013; 33:465–475. DOI:
10.1007/s10571-013-9922-y. PMID:
23478940.
Article
15. Mareschi K, Castiglia S, Sanavio F, Rustichelli D, Muraro M, Defedele D, Bergallo M, Fagioli F. Immunoregulatory effects on T lymphocytes by human mesenchymal stromal cells isolated from bone marrow, amniotic fluid, and placenta. Exp Hematol. 2016; 44:138–150.e1. DOI:
10.1016/j.exphem.2015.10.009. PMID:
26577566.
Article
16. Ramasamy TS, Velaithan V, Yeow Y, Sarkar FH. Stem cells derived from amniotic fluid: a potential pluripotent-like cell source for cellular therapy? Curr Stem Cell Res Ther. 2018; 13:252–264. DOI:
10.2174/1574888X13666180115093800. PMID:
29336267.
Article
17. Markmee R, Aungsuchawan S, Narakornsak S, Tancharoen W, Bumrungkit K, Pangchaidee N, Pothacharoen P, Puaninta C. Differentiation of mesenchymal stem cells from human amniotic fluid to cardiomyocyte-like cells. Mol Med Rep. 2017; 16:6068–6076. DOI:
10.3892/mmr.2017.7333. PMID:
28849052. PMCID:
PMC5865810.
Article
18. Tripathy NK, Rizvi SHM, Singh SP, Garikpati VNS, Nityanand S. Cardiomyogenic heterogeneity of clonal sub-populations of human bone marrow mesenchymal stem cells. J Stem Cells Regen Med. 2018; 14:27–33. PMID:
30018470. PMCID:
PMC6043656.
Article
19. Batsali AK, Pontikoglou C, Koutroulakis D, Pavlaki KI, Damianaki A, Mavroudi I, Alpantaki K, Kouvidi E, Kontakis G, Papadaki HA. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton’s jelly and bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther. 2017; 8:102. DOI:
10.1186/s13287-017-0555-9. PMID:
28446235. PMCID:
PMC5406919.
Article
20. Armiñán A, Gandía C, Bartual M, García-Verdugo JM, Lledó E, Mirabet V, Llop M, Barea J, Montero JA, Sepúlveda P. Cardiac differentiation is driven by NKX2.5 and GATA4 nuclear translocation in tissue-specific mesenchymal stem cells. Stem Cells Dev. 2009; 18:907–918. DOI:
10.1089/scd.2008.0292. PMID:
18983250.
Article
21. Yi Q, Xu H, Yang K, Wang Y, Tan B, Tian J, Zhu J. Islet-1 induces the differentiation of mesenchymal stem cells into cardiomyocyte-like cells through the regulation of Gcn5 and DNMT-1. Mol Med Rep. 2017; 15:2511–2520. DOI:
10.3892/mmr.2017.6343. PMID:
28447752. PMCID:
PMC5428324.
Article
22. Genead R, Danielsson C, Andersson AB, Corbascio M, Franco-Cereceda A, Sylvén C, Grinnemo KH. Islet-1 cells are cardiac progenitors present during the entire lifespan: from the embryonic stage to adulthood. Stem Cells Dev. 2010; 19:1601–1615. DOI:
10.1089/scd.2009.0483. PMID:
20109033.
Article