Intest Res.  2016 Apr;14(2):127-138. 10.5217/ir.2016.14.2.127.

Pathogenic role of the gut microbiota in gastrointestinal diseases

Affiliations
  • 1Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA. nkamada@umich.edu

Abstract

The gastrointestinal (GI) tract is colonized by a dense community of commensal microorganisms referred to as the gut microbiota. The gut microbiota and the host have co-evolved, and they engage in a myriad of immunogenic and metabolic interactions. The gut microbiota contributes to the maintenance of host health. However, when healthy microbial structure is perturbed, a condition termed dysbiosis, the altered gut microbiota can trigger the development of various GI diseases including inflammatory bowel disease, colon cancer, celiac disease, and irritable bowel syndrome. There is a growing body of evidence suggesting that multiple intrinsic and extrinsic factors, such as genetic variations, diet, stress, and medication, can dramatically affect the balance of the gut microbiota. Therefore, these factors regulate the development and progression of GI diseases by inducing dysbiosis. Herein, we will review the recent advances in the field, focusing on the mechanisms through which intrinsic and extrinsic factors induce dysbiosis and the role a dysbiotic microbiota plays in the pathogenesis of GI diseases.

Keyword

Gut microbiota; Gastrointestinal microbiome; Dysbiosis; Pathobiont; Gastrointestinal diseases

MeSH Terms

Celiac Disease
Colon
Colonic Neoplasms
Diet
Dysbiosis
Gastrointestinal Diseases*
Genetic Variation
Inflammatory Bowel Diseases
Irritable Bowel Syndrome
Microbiota*

Figure

  • Fig. 1 The pathogenic role of the gut microbiota in gastrointestinal (GI) diseases. Various environmental and immunological factors cause gut dysbiosis. The dysbiotic microbiota exhibits abnormal immune stimulating capacity as well as impaired metabolic functions that lead to development of GI diseases, such as IBD.


Cited by  7 articles

Pathogenesis of Inflammatory Bowel Disease and Recent Advances in Biologic Therapies
Duk Hwan Kim, Jae Hee Cheon
Immune Netw. 2017;17(1):25-40.    doi: 10.4110/in.2017.17.1.25.

Host-microbial Cross-talk in Inflammatory Bowel Disease
Hiroko Nagao-Kitamoto, Nobuhiko Kamada
Immune Netw. 2017;17(1):1-12.    doi: 10.4110/in.2017.17.1.1.

Effect of gut microbiome on minor complications after a colonoscopy
Jae Hyun Kim, Youn Jung Choi, Hye Jung Kwon, Kyoungwon Jung, Sung Eun Kim, Won Moon, Moo In Park, Seun Ja Park
Intest Res. 2021;19(3):341-348.    doi: 10.5217/ir.2020.00057.

An analysis of dietary fiber and fecal fiber components including pH in rural Africans with colorectal cancer
Mohammed Faruk, Sani Ibrahim, Ahmed Adamu, Abdulmumini Hassan Rafindadi, Yahaya Ukwenya, Yawale Iliyasu, Abdullahi Adamu, Surajo Mohammed Aminu, Mohammed Sani Shehu, Danladi Amodu Ameh, Abdullahi Mohammed, Saad Aliyu Ahmed, John Idoko, Atara Ntekim, Aishatu Maude Suleiman, Khalid Zahir Shah, Kasimu Umar Adoke
Intest Res. 2018;16(1):99-108.    doi: 10.5217/ir.2018.16.1.99.

Impact of microbiota in colorectal carcinogenesis: lessons from experimental models
Linda Chia-Hui Yu, Shu-Chen Wei, Yen-Hsuan Ni
Intest Res. 2018;16(3):346-357.    doi: 10.5217/ir.2018.16.3.346.

Seven days triple therapy for eradication of Helicobacter pylori does not alter the disease activity of patients with inflammatory bowel disease
Shinichiro Shinzaki, Toshimitsu Fujii, Shigeki Bamba, Maiko Ogawa, Taku Kobayashi, Masahide Oshita, Hiroki Tanaka, Keiji Ozeki, Sakuma Takahashi, Hiroki Kitamoto, Kazuhito Kani, Sohachi Nanjo, Takeshi Sugaya, Yuko Sakakibara, Toshihiro Inokuchi, Kazuki Kakimoto, Akihiro Yamada, Hisae Yasuhara, Yoko Yokoyama, Takuya Yoshino, Akira Matsui, Misaki Nakamura, Taku Tomizawa, Ryosuke Sakemi, Noriko Kamata, Toshifumi Hibi
Intest Res. 2018;16(4):609-618.    doi: 10.5217/ir.2018.00044.

Single fecal microbiota transplantation failed to change intestinal microbiota and had limited effectiveness against ulcerative colitis in Japanese patients
Shinta Mizuno, Kosaku Nanki, Katsuyoshi Matsuoka, Keiichiro Saigusa, Keiko Ono, Mari Arai, Shinya Sugimoto, Hiroki Kiyohara, Moeko Nakashima, Kozue Takeshita, Makoto Naganuma, Wataru Suda, Masahira Hattori, Takanori Kanai
Intest Res. 2017;15(1):68-74.    doi: 10.5217/ir.2017.15.1.68.


Reference

1. Kamada N, Seo SU, Chen GY, Núñez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013; 13:321–335. PMID: 23618829.
Article
2. Kamada N, Núñez G. Regulation of the immune system by the resident intestinal bacteria. Gastroenterology. 2014; 146:1477–1488. PMID: 24503128.
Article
3. Kamada N, Chen GY, Inohara N, Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 2013; 14:685–690. PMID: 23778796.
Article
4. Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011; 331:337–341. PMID: 21205640.
Article
5. Lewis SJ, Heaton KW. Increasing butyrate concentration in the distal colon by accelerating intestinal transit. Gut. 1997; 41:245–251. PMID: 9301506.
Article
6. Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbederived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013; 504:446–450. PMID: 24226770.
Article
7. Gérard P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens. 2013; 3:14–24. PMID: 25437605.
Article
8. Mukherjee PK, Sendid B, Hoarau G, Colombel JF, Poulain D, Ghannoum MA. Mycobiota in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol. 2015; 12:77–87. PMID: 25385227.
Article
9. Rautava S, Luoto R, Salminen S, Isolauri E. Microbial contact during pregnancy, intestinal colonization and human disease. Nat Rev Gastroenterol Hepatol. 2012; 9:565–576. PMID: 22890113.
Article
10. Ananthakrishnan AN. Epidemiology and risk factors for IBD. Nat Rev Gastroenterol Hepatol. 2015; 12:205–217. PMID: 25732745.
Article
11. Manichanh C, Borruel N, Casellas F, Guarner F. The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol. 2012; 9:599–608. PMID: 22907164.
Article
12. Nell S, Suerbaum S, Josenhans C. The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nat Rev Microbiol. 2010; 8:564–577. PMID: 20622892.
Article
13. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007; 104:13780–13785. PMID: 17699621.
Article
14. Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012; 482:179–185. PMID: 22297845.
Article
15. Wright DP, Rosendale DI, Robertson AM. Prevotella enzymes involved in mucin oligosaccharide degradation and evidence for a small operon of genes expressed during growth on mucin. FEMS Microbiol Lett. 2000; 190:73–79. PMID: 10981693.
Article
16. Lucke K, Miehlke S, Jacobs E, Schuppler M. Prevalence of Bacteroides and Prevotella spp. in ulcerative colitis. J Med Microbiol. 2006; 55:617–624. PMID: 16585651.
17. Elinav E, Strowig T, Kau AL, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 2011; 145:745–757. PMID: 21565393.
Article
18. Couturier-Maillard A, Secher T, Rehman A, et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest. 2013; 123:700–711. PMID: 23281400.
Article
19. Sellon RK, Tonkonogy S, Schultz M, et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun. 1998; 66:5224–5231. PMID: 9784526.
Article
20. Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell. 1993; 75:253–261. PMID: 8402910.
Article
21. Kim SC, Tonkonogy SL, Albright CA, et al. Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria. Gastroenterology. 2005; 128:891–906. PMID: 15825073.
Article
22. Bohn E, Bechtold O, Zahir N, et al. Host gene expression in the colon of gnotobiotic interleukin-2-deficient mice colonized with commensal colitogenic or noncolitogenic bacterial strains: common patterns and bacteria strain specific signatures. Inflamm Bowel Dis. 2006; 12:853–862. PMID: 16954804.
Article
23. Kim SC, Tonkonogy SL, Karrasch T, Jobin C, Sartor RB. Dualassociation of gnotobiotic IL-10-/- mice with 2 nonpathogenic commensal bacteria induces aggressive pancolitis. Inflamm Bowel Dis. 2007; 13:1457–1466. PMID: 17763473.
Article
24. Rath HC, Wilson KH, Sartor RB. Differential induction of colitis and gastritis in HLA-B27 transgenic rats selectively colonized with Bacteroides vulgatus or Escherichia coli. Infect Immun. 1999; 67:2969–2974. PMID: 10338507.
Article
25. Brown K, DeCoffe D, Molcan E, Gibson DL. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients. 2012; 4:1095–1119. PMID: 23016134.
Article
26. DeVoss J, Diehl L. Murine models of inflammatory bowel disease (IBD): challenges of modeling human disease. Toxicol Pathol. 2014; 42:99–110. PMID: 24231829.
27. Devkota S, Wang Y, Musch MW, et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature. 2012; 487:104–108. PMID: 22722865.
Article
28. Muyzer G, Stams AJ. The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol. 2008; 6:441–454. PMID: 18461075.
Article
29. Rowan F, Docherty NG, Murphy M, Murphy B, Calvin Coffey J, O'Connell PR. Desulfovibrio bacterial species are increased in ulcerative colitis. Dis Colon Rectum. 2010; 53:1530–1536. PMID: 20940602.
Article
30. Zhang C, Zhang M, Pang X, Zhao Y, Wang L, Zhao L. Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISME J. 2012; 6:1848–1857. PMID: 22495068.
Article
31. Hentges DJ, Maier BR, Burton GC, Flynn MA, Tsutakawa RK. Effect of a high-beef diet on the fecal bacterial flora of humans. Cancer Res. 1977; 37:568–571. PMID: 832279.
32. Palm NW, de Zoete MR, Cullen TW, et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014; 158:1000–1010. PMID: 25171403.
Article
33. Mahid SS, Minor KS, Soto RE, Hornung CA, Galandiuk S. Smoking and inflammatory bowel disease: a meta-analysis. Mayo Clin Proc. 2006; 81:1462–1471. PMID: 17120402.
Article
34. Cosnes J. Tobacco and IBD: relevance in the understanding of disease mechanisms and clinical practice. Best Pract Res Clin Gastroenterol. 2004; 18:481–496. PMID: 15157822.
Article
35. Morgan XC, Tickle TL, Sokol H, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012; 13:R79. DOI: 10.1186/gb-2012-13-9-r79. PMID: 23013615.
Article
36. Shaw SY, Blanchard JF, Bernstein CN. Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. Am J Gastroenterol. 2010; 105:2687–2692. PMID: 20940708.
Article
37. Kronman MP, Zaoutis TE, Haynes K, Feng R, Coffin SE. Antibiotic exposure and IBD development among children: a population-based cohort study. Pediatrics. 2012; 130:e794–e803. PMID: 23008454.
Article
38. Mylonaki M, Langmead L, Pantes A, Johnson F, Rampton DS. Enteric infection in relapse of inflammatory bowel disease: importance of microbiological examination of stool. Eur J Gastroenterol Hepatol. 2004; 16:775–778. PMID: 15256979.
39. Schubert AM, Sinani H, Schloss PD. Antibiotic-Induced alterations of the murine gut microbiota and subsequent effects on colonization resistance against Clostridium difficile. MBio. 2015; 6:e00974–e00915. DOI: 10.1128/mBio.00974-15. PMID: 26173701.
40. Rupnik M, Wilcox MH, Gerding DN. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol. 2009; 7:526–536. PMID: 19528959.
Article
41. Musa S, Thomson S, Cowan M, Rahman T. Clostridium difficile infection and inflammatory bowel disease. Scand J Gastroenterol. 2010; 45:261–272. PMID: 20025557.
42. Rodemann JF, Dubberke ER, Reske KA, Seo da H, Stone CD. Incidence of Clostridium difficile infection in inflammatory bowel disease. Clin Gastroenterol Hepatol. 2007; 5:339–344. PMID: 17368233.
Article
43. Issa M, Vijayapal A, Graham MB, et al. Impact of Clostridium difficile on inflammatory bowel disease. Clin Gastroenterol Hepatol. 2007; 5:345–351. PMID: 17368234.
44. Cho I, Yamanishi S, Cox L, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012; 488:621–626. PMID: 22914093.
Article
45. Theriot CM, Koenigsknecht MJ, Carlson PE Jr, et al. Antibioticinduced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun. 2014; 5:3114. DOI: 10.1038/ncomms4114. PMID: 24445449.
46. Sorg JA, Sonenshein AL. Bile salts and glycine as cogerminants for Clostridium difficile spores. J Bacteriol. 2008; 190:2505–2512. PMID: 18245298.
Article
47. Buffie CG, Bucci V, Stein RR, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 2015; 517:205–208. PMID: 25337874.
48. Kruis W, Kalek HD, Stellaard F, Paumgartner G. Altered fecal bile acid pattern in patients with inflammatory bowel disease. Digestion. 1986; 35:189–198. PMID: 3817328.
Article
49. Duboc H, Rajca S, Rainteau D, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut. 2013; 62:531–539. PMID: 22993202.
Article
50. Cao Y, Shen J, Ran ZH. Association between Faecalibacterium prausnitzii reduction and inflammatory bowel disease: a meta-analysis and systematic review of the literature. Gastroenterol Res Pract. 2014; 2014:872725. DOI: 10.1155/2014/872725. PMID: 24799893.
51. Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008; 105:16731–16736. PMID: 18936492.
Article
52. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005; 55:74–108. PMID: 15761078.
Article
53. Aune D, Chan DS, Lau R, et al. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2011; 343:d6617. DOI: 10.1136/bmj.d6617. PMID: 22074852.
Article
54. Akin H, Tözün N. Diet, microbiota, and colorectal cancer. J Clin Gastroenterol. 2014; 48(Suppl 1):S67–S69. PMID: 25291132.
Article
55. Oostindjer M, Alexander J, Amdam GV, et al. The role of red and processed meat in colorectal cancer development: a perspective. Meat Sci. 2014; 97:583–596. PMID: 24769880.
Article
56. Ou J, Carbonero F, Zoetendal EG, et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am J Clin Nutr. 2013; 98:111–120. PMID: 23719549.
Article
57. Gill CI, Rowland IR. Diet and cancer: assessing the risk. Br J Nutr. 2002; 88(Suppl 1):S73–S87. PMID: 12215186.
Article
58. Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol. 2011; 17:1519–1528. PMID: 21472114.
Article
59. Sears CL. Enterotoxigenic Bacteroides fragilis : a rogue among symbiotes. Clin Microbiol Rev. 2009; 22:349–369. PMID: 19366918.
Article
60. Rhee KJ, Wu S, Wu X, et al. Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect Immun. 2009; 77:1708–1718. PMID: 19188353.
Article
61. Wu S, Rhee KJ, Albesiano E, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009; 15:1016–1022. PMID: 19701202.
Article
62. Toprak NU, Yagci A, Gulluoglu BM, et al. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect. 2006; 12:782–786. PMID: 16842574.
63. Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E, Nougayréde JP. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci U S A. 2010; 107:11537–11542. PMID: 20534522.
Article
64. Arthur JC, Perez-Chanona E, Mühlbauer M, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012; 338:120–123. PMID: 22903521.
Article
65. Huxley RR, Ansary-Moghaddam A, Clifton P, Czernichow S, Parr CL, Woodward M. The impact of dietary and lifestyle risk factors on risk of colorectal cancer: a quantitative overview of the epidemiological evidence. Int J Cancer. 2009; 125:171–180. PMID: 19350627.
Article
66. Vassallo G, Mirijello A, Ferrulli A, et al. Review article: Alcohol and gut microbiota - the possible role of gut microbiota modulation in the treatment of alcoholic liver disease. Aliment Pharmacol Ther. 2015; 41:917–927. PMID: 25809237.
Article
67. Mutlu EA, Gillevet PM, Rangwala H, et al. Colonic microbiome is altered in alcoholism. Am J Physiol Gastrointest Liver Physiol. 2012; 302:G966–G978. PMID: 22241860.
Article
68. Yan AW, Fouts DE, Brandl J, et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology. 2011; 53:96–105. PMID: 21254165.
Article
69. Nistal E, Fernández-Fernández N, Vivas S, Olcoz JL. Factors Determining Colorectal Cancer: The Role of the Intestinal Microbiota. Front Oncol. 2015; 5:220. PMID: 26528432.
Article
70. Mueller S, Saunier K, Hanisch C, et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol. 2006; 72:1027–1033. PMID: 16461645.
Article
71. Makivuokko H, Tiihonen K, Tynkkynen S, Paulin L, Rautonen N. The effect of age and non-steroidal anti-inflammatory drugs on human intestinal microbiota composition. Br J Nutr. 2010; 103:227–234. PMID: 19703328.
Article
72. Biagi E, Nylund L, Candela M, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One. 2010; 5:e10667. DOI: 10.1371/journal.pone.0010667. PMID: 20498852.
Article
73. Marchesi JR, Dutilh BE, Hall N, et al. Towards the human colorectal cancer microbiome. PLoS One. 2011; 6:e20447. DOI: 10.1371/journal.pone.0020447. PMID: 21647227.
Article
74. Kapatral V, Anderson I, Ivanova N, et al. Genome sequence and analysis of the oral bacterium Fusobacterium nucleatum strain ATCC 25586. J Bacteriol. 2002; 184:2005–2018. PMID: 11889109.
Article
75. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013; 14:195–206. PMID: 23954158.
Article
76. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010; 464:59–65. PMID: 20203603.
77. Catassi C, Kryszak D, Bhatti B, et al. Natural history of celiac disease autoimmunity in a USA cohort followed since 1974. Ann Med. 2010; 42:530–538. PMID: 20868314.
Article
78. Cenit MC, Olivares M, Codoñer-Franch P, Sanz Y. Intestinal microbiota and celiac disease: cause, consequence or coevolution? Nutrients. 2015; 7:6900–6923. PMID: 26287240.
Article
79. Di Cagno R, De Angelis M, De Pasquale I, et al. Duodenal and faecal microbiota of celiac children: molecular, phenotype and metabolome characterization. BMC Microbiol. 2011; 11:219. DOI: 10.1186/1471-2180-11-219. PMID: 21970810.
Article
80. Sánchez E, Donat E, Ribes-Koninckx C, Fernández-Murga ML, Sanz Y. Duodenal-mucosal bacteria associated with celiac disease in children. Appl Environ Microbiol. 2013; 79:5472–5479. PMID: 23835180.
Article
81. Wacklin P, Laurikka P, Lindfors K, et al. Altered duodenal microbiota composition in celiac disease patients suffering from persistent symptoms on a long-term gluten-free diet. Am J Gastroenterol. 2014; 109:1933–1941. PMID: 25403367.
Article
82. Combs MR. Lewis blood group system review. Immunohematology. 2009; 25:112–118. PMID: 20406017.
Article
83. Parmar AS, Alakulppi N, Paavola-Sakki P, et al. Association study of FUT2 (rs601338) with celiac disease and inflammatory bowel disease in the Finnish population. Tissue Antigens. 2012; 80:488–493. PMID: 23075394.
Article
84. Tong M, McHardy I, Ruegger P, et al. Reprograming of gut microbiome energy metabolism by the FUT2 Crohns disease risk polymorphism. ISME J. 2014; 8:2193–2206. PMID: 24781901.
Article
85. Wacklin P, Tuimala J, Nikkilä J, et al. Faecal microbiota composition in adults is associated with the FUT2 gene determining the secretor status. PLoS One. 2014; 9:e94863. PMID: 24733310.
86. Lopez P, Gonzalez-Rodriguez I, Gueimonde M, Margolles A, Suarez A. Immune response to Bifidobacterium bifidum strains support Treg/Th17 plasticity. PLoS One. 2011; 6:e24776. DOI: 10.1371/journal.pone.0024776. PMID: 21966367.
Article
87. Hurd EA, Domino SE. Increased susceptibility of secretor factor gene Fut2-null mice to experimental vaginal candidiasis. Infect Immun. 2004; 72:4279–4281. PMID: 15213174.
Article
88. Nieuwenhuizen WF, Pieters RH, Knippels LM, Jansen MC, Koppelman SJ. Is Candida albicans a trigger in the onset of coeliac disease? Lancet. 2003; 361:2152–2154. PMID: 12826451.
Article
89. Mårild K, Ye W, Lebwohl B, et al. Antibiotic exposure and the development of coeliac disease: a nationwide case-control study. BMC Gastroenterol. 2013; 13:109. DOI: 10.1186/1471-230X-13-109. PMID: 23834758.
Article
90. Galipeau HJ, McCarville JL, Huebener S, et al. Intestinal microbiota modulates gluten-induced immunopathology in humanized mice. Am J Pathol. 2015; 185:2969–2982. PMID: 26456581.
Article
91. Akobeng AK, Ramanan AV, Buchan I, Heller RF. Effect of breast feeding on risk of coeliac disease: a systematic review and meta-analysis of observational studies. Arch Dis Child. 2006; 91:39–43. PMID: 16287899.
Article
92. Peters U, Schneeweiss S, Trautwein EA, Erbersdobler HF. A case-control study of the effect of infant feeding on celiac disease. Ann Nutr Metab. 2001; 45:135–142. PMID: 11463995.
Article
93. Fälth-Magnusson K, Franzen L, Jansson G, Laurin P, Stenhammar L. Infant feeding history shows distinct differences between Swedish celiac and reference children. Pediatr Allergy Immunol. 1996; 7:1–5. PMID: 8792377.
Article
94. Olivares M, Albrecht S, De Palma G, et al. Human milk composition differs in healthy mothers and mothers with celiac disease. Eur J Nutr. 2015; 54:119–128. PMID: 24700375.
Article
95. Longstreth GF, Thompson WG, Chey WD, Houghton LA, Mearin F, Spiller RC. Functional bowel disorders. Gastroenterology. 2006; 130:1480–1491. PMID: 16678561.
Article
96. Collins SM. A role for the gut microbiota in IBS. Nat Rev Gastroenterol Hepatol. 2014; 11:497–505. PMID: 24751910.
Article
97. Öhman L, Törnblom H, Simrén M. Crosstalk at the mucosal border: importance of the gut microenvironment in IBS. Nat Rev Gastroenterol Hepatol. 2015; 12:36–49. PMID: 25446728.
Article
98. Jeffery IB, O'Toole PW, Öhman L, et al. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut. 2012; 61:997–1006. PMID: 22180058.
Article
99. Crouzet L, Gaultier E, Del'Homme C, et al. The hypersensitivity to colonic distension of IBS patients can be transferred to rats through their fecal microbiota. Neurogastroenterol Motil. 2013; 25:e272–e282. PMID: 23433203.
100. Kim G, Deepinder F, Morales W, et al. Methanobrevibacter smithii is the predominant methanogen in patients with constipation-predominant IBS and methane on breath. Dig Dis Sci. 2012; 57:3213–3218. PMID: 22573345.
101. Dridi B, Raoult D, Drancourt M. Archaea as emerging organisms in complex human microbiomes. Anaerobe. 2011; 17:56–63. PMID: 21420503.
102. DuPont AW. Postinfectious irritable bowel syndrome. Clin Infect Dis. 2008; 46:594–599. PMID: 18205536.
103. Connor BA. Sequelae of traveler's diarrhea: focus on postinfectious irritable bowel syndrome. Clin Infect Dis. 2005; 41(Suppl 8):S577–S586. PMID: 16267722.
104. Beatty JK, Bhargava A, Buret AG. Post-infectious irritable bowel syndrome: mechanistic insights into chronic disturbances following enteric infection. World J Gastroenterol. 2014; 20:3976–3985. PMID: 24744587.
Article
105. Mendall MA, Kumar D. Antibiotic use, childhood affluence and irritable bowel syndrome (IBS). Eur J Gastroenterol Hepatol. 1998; 10:59–62. PMID: 9512954.
Article
106. Villarreal AA, Aberger FJ, Benrud R, Gundrum JD. Use of broad-spectrum antibiotics and the development of irritable bowel syndrome. WMJ. 2012; 111:17–20. PMID: 22533211.
107. Chow J, Tang H, Mazmanian SK. Pathobionts of the gastrointestinal microbiota and inflammatory disease. Curr Opin Immunol. 2011; 23:473–480. PMID: 21856139.
Article
108. de Roest RH, Dobbs BR, Chapman BA, et al. The low FODMAP diet improves gastrointestinal symptoms in patients with irritable bowel syndrome: a prospective study. Int J Clin Pract. 2013; 67:895–903. PMID: 23701141.
Article
109. Halmos EP, Christophersen CT, Bird AR, Shepherd SJ, Gibson PR, Muir JG. Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut. 2015; 64:93–100. PMID: 25016597.
Article
110. Borody TJ, Khoruts A. Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol. 2012; 9:88–96. PMID: 22183182.
Article
111. van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013; 368:407–415. PMID: 23323867.
Article
112. Hourigan SK, Chen LA, Grigoryan Z, et al. Microbiome changes associated with sustained eradication of Clostridium difficile after single faecal microbiota transplantation in children with and without inflammatory bowel disease. Aliment Pharmacol Ther. 2015; 42:741–752. PMID: 26198180.
Article
113. Kahouli I, Tomaro-Duchesneau C, Prakash S. Probiotics in colorectal cancer (CRC) with emphasis on mechanisms of action and current perspectives. J Med Microbiol. 2013; 62:1107–1123. PMID: 23558140.
Article
114. Gianotti L, Morelli L, Galbiati F, et al. A randomized doubleblind trial on perioperative administration of probiotics in colorectal cancer patients. World J Gastroenterol. 2010; 16:167–175. PMID: 20066735.
Article
115. Ishikawa H, Akedo I, Otani T, et al. Randomized trial of dietary fiber and Lactobacillus casei administration for prevention of colorectal tumors. Int J Cancer. 2005; 116:762–767. PMID: 15828052.
Article
Full Text Links
  • IR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr