Lab Med Online.  2018 Jul;8(3):99-106. 10.3343/lmo.2018.8.3.99.

Biological and Genetic Characteristics of Clinically Isolated Enterobacter cloacae with Multidrug Resistance

Affiliations
  • 1Department of Laboratory Medicine, St. Mary's Hospital, Daejeon Catholic University, Daejeon, Korea.
  • 2Department of Laboratory Medicine, Chungnam National University Hospital, Daejeon, Korea. shkoo@cnu.ac.kr

Abstract

BACKGROUND
From January 2014 to December 2015, 69 clones of Enterobacter cloacae showing multidrug resistance to six classes of antimicrobial agents were collected from two medical centers in Korea.
METHODS
Minimum inhibitory concentrations were determined using the E-test method, and 17 genes were detected using polymerase chain reaction (PCR). The epidemiological relatedness of the strains was identified using repetitive element sequence-based PCR and multilocus sequence typing.
RESULTS
The 69 E. cloacae clones produced extended spectrum β lactamase (ESBL) and AmpC and showed multidrug resistance to cefotaxime, ceftazidime, and aztreonam. We identified the following sequence types: ST56 of type VI for ESBL SHV (N=12, 17.4%); ST53, ST114, ST113, and ST550 of types I, IV, VI, and VII, respectively, for CTX-M (N=11, 15.9%); and ST668 of type III for the carbapenemase NDM gene (N=1, 1.5%). The AmpC DHA gene (N=2, 2.89%) was confirmed as ST134, although its type was not identified, whereas EBC (MIR/ACT; N=18, 26.1%) was identified as ST53, ST24, ST41, ST114, ST442, ST446, ST484, and ST550 of types V, I, III, IV, VII, and VI, respectively. The formed subclasses were bla CTX-M-3 and bla CTX-M-22 by CTX-M-1, bla CTX-M-9 and bla CTX-M-125 by CTX-M-9, bla DHA-1 by DHA, and bla MIR-7 and bla ACT-15,17,18,25,27,28 by EBC (MIR/ACT).
CONCLUSIONS
There were no epidemiological relationships between the gene products and the occurrence of resistance among the strains.

Keyword

Enterobacter cloacae; Extended spectrum β lactamase; AmpC; Repetitive element sequence-based polymerase chain reaction; Multilocus sequence typing; Multidrug resistance

MeSH Terms

Anti-Infective Agents
Aztreonam
Cefotaxime
Ceftazidime
Cloaca
Clone Cells
Drug Resistance, Multiple*
Enterobacter cloacae*
Enterobacter*
Korea
Methods
Microbial Sensitivity Tests
Multilocus Sequence Typing
Polymerase Chain Reaction
Anti-Infective Agents
Aztreonam
Cefotaxime
Ceftazidime

Figure

  • Fig. 1. REP-PCR patterns of E. cloacae isolates. Lane M 0.05–2.5 kb molecular size marker. Lane 2, 8, 11, 14, 23–25, 30-31, 43, 70: I type. Lane 1, 48–49, 51, 53, 56–57, 59: II type. Lane 33, 37, 61, 63, 65–68: III type. Lane 38–40, 42, 44, 47, 52: IV type. Lane 4, 18–19, 26, 34, 64, 69: V type. Lane 12, 20, 50, 54, 60, 46: VI type. Lane 9–10, 13, 17, 28: VII type. Lane 35–36, 62: VIII type. Lane 3, 22, 32: IX type. Lane 45, 55: X type.


Reference

1.Sanders WE Jr., Sanders CC. Enterobacter spp.: pathogens poised to fourish at the turn of the century. Clin Microbiol Rev. 1997. 10:220–41.
2.Dalben M., Varkulja G., Basso M., Krebs VL., Gibelli MA., van der Heijden I, et al. Investigation of an outbreak of Enterobacter cloacae in a neonatal unit and review of the literature. J Hosp Infect. 2008. 70:7–14.
Article
3.Fernandez A., Pereira MJ., Suarez JM., Poza M., Trevino M., Villalón P, et al. Emergence in Spain of a multidrug-resistant Enterobacter cloacae clinical isolate producing SFO-1 extended-spectrum beta-lactamase. J Clin Microbiol. 2011. 49:822–8.
4.Hamada Y., Watanabe K., Tatsuya T., Mezaki K., Takeuchi S., Shimizu T, et al. Three cases of IMP-type metallo-β-lactamase-producing Enterobacter cloacae bloodstream infection in Japan. J Infect Chemother. 2013. 19:956–8.
Article
5.Schaberg DR., Culver DH., Gaynes RP. Major trends in the microbial etiology of nosocomial infection. Am J Med. 1991. 91:S72–S75.
Article
6.Sirot D., Sirot J., Labia R., Morand A., Courvalin P., Darfeuille-Michaud A, et al. Transferable resistance to third-generation cephalosporins in clinical isolates of Klebsiella pneumoniae: identifcation of CTX-1, a novel β-lactamase. J Antimicrob Chemother. 1987. 20:323–34.
7.Altschul SF., Gish W., Miller W., Myers EW., Lipman DJ. Basic local alignment search tool. Available from. http://www.ncbi.nlm.nih.gov/BLAST. Accessed.
8.Jolley K. Enterobacter cloacae MLST Databases. Available from. http://pubmlst.org/ecloacae/. Accessed.
9.Park YJ., Park SY., Oh EJ., Park JJ., Lee KY., Woo GJ, et al. Occurrence of extended-spectrum β-lactamases among chromosomal AmpC-producing Enterobacter cloacae, Citrobacter freundii, and Serratia marcescens in Korea and investigation of screening criteria. Diagn Microbiol Infect Dis. 2005. 51:265–9.
Article
10.Coudron PE., Moland ES., Sanders CC. Occurrence and detection of extended-spectrum β-lactamases in members of the family Enterobacteriaceae at a veterans medical center: seek and you may fnd. J Clin Microbiol. 1997. 35:2593–7.
11.Souna D., Amir AS., Bekhoucha SN., Berrazeg M., Drissi M. Molecular typing and characterization of TEM, SHV, CTX-M, and CMY-2 β-lactamases in Enterobacter cloacae strains isolated in patients and their hospital environment in the west of Algeria. Med Mal Infect. 2014. 44:146–52.
Article
12.Livermore DM. β-lactamases in laboratory and clinical resistance. Clin Microbiol Rev. 1995. 8:557–84.
13.Jeong SH. Extended-spectrum beta-lactams-resistant gram-negative bacilli. Asian Conf Clin Pathol. 2000. 6:S61–S62.
14.Harada S., Ishii Y., Yamaguchi K. Extended-spectrum beta-lactamases: implications for the clinical laboratory and therapy. Korean J Lab Med. 2008. 28:401–12.
15.Ko CS., Sung JY., Koo SH., Kwon GC., Shin SY., Park JW. Prevalence of extended-spectrum beta-lactamase in Escherichia coli and Klebsiella pneumoniae from Daejeon. Korean J Lab Med. 2007. 27:344–50.
16.Liu SY., Su LH., Yeh YL., Chu C., Lai JC., Chiu CH. Characterization of plasmids encoding CTX-M-3 extened-spectrum β-lactamase from Enterobacteriaceae isolated at a university hospital in Taiwan. Int J Antimicrob Agents. 2007. 29:440–5.
17.Kim CK., Yum JH., Yong D., Jeong SH., Lee K., Chong Y. Detection of CTX-M-type extended-spectrum β-lactamase in clinical isolates of chromosomal AmpC beta-lactamase-producing Enterobacteriaceae from Korea and their molecular characteristics. Korean J Clin Microbiol. 2008. 11:90–7.
18.Baraniak A., Sadowy E., Hryniewicz W., Gniadkowski M. Two different extended-spectrum β-lactamase (ESBLs) in one of the frst ESBL-producing Salmonella isolates in Poland. J Clin Microbiol. 2002. 40:1095–7.
19.Baraniak A., Fiett J., Sulikowska A., Hryniewicz W., Gniadkowski M. Countrywide spread of CTX-M-3 extended-spectrum β-lactamaseproducing microorganisms of the family Enterobacteriaceae in Poland. Antimicrob Agents Chemother. 2002. 46:151–9.
20.Yu Y., Ji S., Chen Y., Zhou W., Wei Z., Li L, et al. Resistance of strains producing extended-spectrum β-lactamases and genotype distribution in China. J Infect. 2007. 54:53–7.
Article
21.Author XX. First cases of NDM-1 (New Delhi Metallo-beta-lactamase)-producing carbapenem resistant Enterobacteriaceae in Korea. Available from. http://cdc.go.kr/CDC/cms/content/mobile/52/12552_view.html. Accessed.
22.Jeong SH., Lee KM., Lee J., Bae IK., Kim JS., Kim HS, et al. Clonal and horizontal spread of the blaOXA-232 gene among Enterobacteriaceae in a Korean hospital. Diagn Microbiol Infect Dis. 2015. 82:70–2.
23.Barnaud G., Arlet G., Danglot C., Philippon A. Cloning and sequencing of the gene encoding the AmpC β-lactamase of Morganella morganii. FEMS Microbiol Lett. 1997. 148:15–20.
Article
24.Poirel L., Guibert M., Girlich D., Naas T., Nordmann P. Cloning, sequence analyses, expression, and distribution of ampC-ampR from Morganella morganii clinical isolates. Antimicrob Agents Chemother. 1999. 43:769–76.
25.Girlich D., Poirel L., Nordmann P. Clonal distribution of multidrug-resis-tant Enterobacter cloacae. Diagn Microbiol Infect Dis. 2015. 81:264–8.
Article
26.Ryoo NH., Kim EC., Hong SG., Park YJ., Lee K., Bae IK, et al. Dissemination of SHV-12 and CTX-M-type extended-spectrum β-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae and emergence of GES-3 in Korea. J Antimicrob Chemother. 2005. 56:698–702.
Article
27.Chang FY., Siu LK., Fung CP., Huang MH., Ho M. Diversity of SHV and TEM β-lactamases in Klebsiella pneumoniae: gene evolution in Northern Taiwan and two novel β-lactamases, SHV-25 and SHV-26. Antimicrob Agents Chemother. 2001. 45:2407–13.
28.Bae IK., Kang HK., Jang IH., Lee W., Kim K., Kim JO. Detection of carbapenemase in clinical Enterobactereriaceae isolates using the VITEK AST-N202 card. Infect Chemother. 2015. 47:167–74.
29.Huang L., Wang X., Feng Y., Xie Y., Xie L., Zong Z. First identifcation of an IMI-1 carbapenemase-producing colistin-resistant Enterobacter cloacae in China. Ann Clin Microbiol Antimicrob. 2015. 14:51.
Article
30.Tato M., Coque TM., Ruíz-Garbajosa P., Pintado V., Cobo J., Sader HS. Complex clonal and plasmid epidemiology in the frst outbreak of Enterobacteriaceae infection involving VIM-1 metallo-β-lactamase in Spain: toward endemicity? Clin Infect Dis. 2007. 45:1171–8.
31.Perez-Perez FJ., Hanson ND. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol. 2002. 40:2153–62.
32.Miyoshi-Akiyama T., Hayakawa K., Ohmagari N., Shimojima M., Kirikae T. Multilocus sequence typing (MLST) for characterization of Enterobacter cloacae. PLoS One. 2013. 8:e66358.
Article
33.Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; Document M100-S28. Wayne, PA: Clinical and Laboratory Standards Institute. 2018.
Full Text Links
  • LMO
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr