Int J Stem Cells.  2015 May;8(1):48-53. 10.15283/ijsc.2015.8.1.48.

Cell Therapy and Tissue Engineering Approaches for Cartilage Repair and/or Regeneration

Affiliations
  • 1Centro de Traumatologia y Ortopedia, Laboratorio de Ingenieria de Tejidos, Clinica Las Condes, Santiago, Chile.
  • 2Centro de Terapia Regenerativa Celular, Laboratorio de Ingenieria de Tejidos, Clinica Las Condes, Santiago, Chile. jminguell@clinicalascondes.cl

Abstract

Articular cartilage injuries caused by traumatic, mechanical and/or by progressive degeneration result in pain, swelling, subsequent loss of joint function and finally osteoarthritis. Due to the peculiar structure of the tissue (no blood supply), chondrocytes, the unique cellular phenotype in cartilage, receive their nutrition through diffusion from the synovial fluid and this limits their intrinsic capacity for healing. The first cellular avenue explored for cartilage repair involved the in situ transplantation of isolated chondrocytes. Latterly, an improved alternative for the above reparative strategy involved the infusion of mesenchymal stem cells (MSC), which in addition to a self-renewal capacity exhibit a differentiation potential to chondrocytes, as well as a capability to produce a vast array of growth factors, cytokines and extracellular matrix compounds involved in cartilage development. In addition to the above and foremost reparative options up till now in use, other therapeutic options have been developed, comprising the design of biomaterial substrates (scaffolds) capable of sustaining MSC attachment, proliferation and differentiation. The implantation of these engineered platforms, closely to the site of cartilage damage, may well facilitate the initiation of an \'in situ' cartilage reparation process. In this mini-review, we examined the timely and conceptual development of several cell-based methods, designed to repair/regenerate a damaged cartilage. In addition to the above described cartilage reparative options, other therapeutic alternatives still in progress are portrayed.

Keyword

Cartilage damage; Repair/regeneration; Cell implantation; Biological scaffolds; Micro fracture; Novel cartilage restorative approaches

MeSH Terms

Cartilage*
Cartilage, Articular
Cell- and Tissue-Based Therapy*
Chondrocytes
Cytokines
Diffusion
Extracellular Matrix
Intercellular Signaling Peptides and Proteins
Joints
Mesenchymal Stromal Cells
Osteoarthritis
Phenotype
Regeneration*
Synovial Fluid
Tissue Engineering*
Cytokines
Intercellular Signaling Peptides and Proteins

Reference

References

1. Zhang Z. Chondrons and the pericellular matrix of chondrocytes. Tissue Eng Part B Rev. 2014; Epub ahead of print. DOI: 10.1089/ten.teb.2014.0286.
Article
2. Dvir-Ginzberg M, Reich E. Chopping off the chondrocyte proteome. Biomarkers. 2014; 1–7. Epub ahead of print. DOI: 10.3109/1354750X.2014.955884. PMID: 25179281.
Article
3. Responte DJ, Natoli RM, Athanasiou KA. Collagens of articular cartilage: structure, function, and importance in tissue engineering. Crit Rev Biomed Eng. 2007; 35:363–411. DOI: 10.1615/CritRevBiomedEng.v35.i5.20. PMID: 19392643.
Article
4. Roughley PJ. The structure and function of cartilage proteoglycans. Eur Cell Mater. 2006; 12:92–101. PMID: 17136680.
Article
5. Hollander AP, Dickinson SC, Kafienah W. Stem cells and cartilage development: complexities of a simple tissue. Stem Cells. 2010; 28:1992–1996. DOI: 10.1002/stem.534. PMID: 20882533. PMCID: 3003945.
Article
6. Cole BJ, Pascual-Garrido C, Grumet RC. Surgical management of articular cartilage defects in the knee. Instr Course Lect. 2010; 59:181–204. PMID: 20415379.
7. Kon E, Mandelbaum B, Buda R, Filardo G, Delcogliano M, Timoncini A, Fornasari PM, Giannini S, Marcacci M. Platelet-rich plasma intra-articular injection versus hyaluronic acid viscosupplementation as treatments for cartilage pathology: from early degeneration to osteoarthritis. Arthroscopy. 2011; 27:1490–1501. DOI: 10.1016/j.arthro.2011.05.011. PMID: 21831567.
Article
8. Rodríguez-Merchán EC. The treatment of cartilage defects in the knee joint: microfracture, mosaicplasty, and autologous chondrocyte implantation. Am J Orthop (Belle Mead NJ). 2012; 41:236–239.
9. Bhardwaj N, Devi D, Mandal BB. Tissue-engineered cartilage: the crossroads of biomaterials, cells and stimulating factors. Macromol Biosci. 2015; 15:153–182. DOI: 10.1002/mabi.201400335.
Article
10. Athanasiou KA, Responte DJ, Brown WE, Hu JC. Harnessing biomechanics to develop cartilage regeneration strategies. J Biomech Eng. 2015; 137:020901. DOI: 10.1115/1.4028825.
Article
11. Richardson JB, Caterson B, Evans EH, Ashton BA, Roberts S. Repair of human articular cartilage after implantation of autologous chondrocytes. J Bone Joint Surg Br. 1999; 81:1064–1068. DOI: 10.1302/0301-620X.81B6.9343.
Article
12. NICE updates guidance on the use of autologous chondrocyte implantation in treating cartilage defects in knee joints. 2005. Available from: www.nice.org.uk/guidance/ta89.
13. Minas T, Gomoll AH, Solhpour S, Rosenberger R, Probst C, Bryant T. Autologous chondrocyte implantation for joint preservation in patients with early osteoarthritis. Clin Orthop Relat Res. 2010; 468:147–157. DOI: 10.1007/s11999-009-0998-0. PMCID: 2795849.
Article
14. Peterson L, Vasiliadis HS, Brittberg M, Lindahl A. Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med. 2010; 38:1117–1124. DOI: 10.1177/0363546509357915. PMID: 20181804.
15. Vasiliadis HS, Wasiak J. Autologous chondrocyte implantation for full thickness articular cartilage defects of the knee. Cochrane Database Syst Rev. 2010; (10):CD003323. PMID: 20927732.
Article
16. Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med (Maywood). 2001; 226:507–520.
Article
17. Somoza RA, Welter JF, Correa D, Caplan AI. Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. Tissue Eng Part B Rev. 2014; 20:596–608. DOI: 10.1089/ten.teb.2013.0771. PMID: 24749845. PMCID: 4241862.
Article
18. Wakitani S, Okabe T, Horibe S, Mitsuoka T, Saito M, Koyama T, Nawata M, Tensho K, Kato H, Uematsu K, Kuroda R, Kurosaka M, Yoshiya S, Hattori K, Ohgushi H. Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. J Tissue Eng Regen Med. 2011; 5:146–150. DOI: 10.1002/term.299.
Article
19. Nejadnik H, Hui JH, Feng Choong EP, Tai BC, Lee EH. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med. 2010; 38:1110–1116. DOI: 10.1177/0363546509359067. PMID: 20392971.
Article
20. Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, Kim JE, Shim H, Shin JS, Shin IS, Ra JC, Oh S, Yoon KS. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014; 32:1254–1266. DOI: 10.1002/stem.1634. PMID: 24449146.
Article
21. Emadedin M, Aghdami N, Taghiyar L, Fazeli R, Moghadasali R, Jahangir S, Farjad R, Baghaban Eslaminejad M. Intra-articular injection of autologous mesenchymal stem cells in six patients with knee osteoarthritis. Arch Iran Med. 2012; 15:422–428. PMID: 22724879.
22. Minguell JJ, Allers C, Lasala GP. Mesenchymal stem cells and the treatment of conditions and diseases: the less glittering side of a conspicuous stem cell for basic research. Stem Cells Dev. 2013; 22:193–203. DOI: 10.1089/scd.2012.0417.
Article
23. Hoch AI, Leach JK. Concise review: optimizing expansion of bone marrow mesenchymal stem/stromal cells for clinical applications. Stem Cells Transl Med. 2014; 3:643–652. DOI: 10.5966/sctm.2013-0196. PMID: 24682286. PMCID: 4006491.
Article
24. Allers C, Lasala GP, Minguell JJ. Presence of osteoclast precursor cells during ex vivo expansion of bone marrow-derived mesenchymal stem cells for autologous use in cell therapy. Cytotherapy. 2014; 16:454–459. DOI: 10.1016/j.jcyt.2013.08.006.
Article
25. Harvey A, Yen TY, Aizman I, Tate C, Case C. Proteomic analysis of the extracellular matrix produced by mesenchymal stromal cells: implications for cell therapy mechanism. PLoS One. 2013; 8:e79283. DOI: 10.1371/journal.pone.0079283. PMID: 24244468. PMCID: 3828366.
Article
26. Brittberg M. Cell carriers as the next generation of cell therapy for cartilage repair: a review of the matrix-induced autologous chondrocyte implantation procedure. Am J Sports Med. 2010; 38:1259–1271. DOI: 10.1177/0363546509346395.
Article
27. Skowroński J, Skowroński R, Rutka M. Large cartilage lesions of the knee treated with bone marrow concentrate and collagen membrane--results. Ortop Traumatol Rehabil. 2013; 15:69–76.
28. Marcacci M, Berruto M, Brocchetta D, Delcogliano A, Ghinelli D, Gobbi A, Kon E, Pederzini L, Rosa D, Sacchetti GL, Stefani G, Zanasi S. Articular cartilage engineering with Hyalograft C: 3-year clinical results. Clin Orthop Relat Res. 2005; (435):96–105. DOI: 10.1097/01.blo.0000165737.87628.5b. PMID: 15930926.
29. Welsch GH, Mamisch TC, Zak L, Blanke M, Olk A, Marlovits S, Trattnig S. Evaluation of cartilage repair tissue after matrix-associated autologous chondrocyte transplantation using a hyaluronic-based or a collagen-based scaffold with morphological MOCART scoring and biochemical T2 mapping: preliminary results. Am J Sports Med. 2010; 38:934–942. DOI: 10.1177/0363546509354971. PMID: 20335510.
Article
30. Freymann U, Petersen W, Kaps C. Cartilage regeneration revisited: entering of new one-step procedures for chondral cartilage repair. OA Orthopaedics. 2013; 1:6. DOI: 10.13172/2052-9627-1-1-586.
Article
31. Giannini S, Buda R, Battaglia M, Cavallo M, Ruffilli A, Ramponi L, Pagliazzi G, Vannini F. One-step repair in talar osteochondral lesions: 4-year clinical results and t2-mapping capability in outcome prediction. Am J Sports Med. 2013; 41:511–518. DOI: 10.1177/0363546512467622.
32. Zwolanek D, Flicker M, Kirstätter E, Zaucke F, van Osch GJVM, Erben RG. β1 integrins mediate attachment of mesenchymal stem cells to cartilage lesions. BioResearch. 2015; Epub ahead of print.
Article
33. Lee CS, Watkins E, Burnsed OA, Schwartz Z, Boyan BD. Tailoring adipose stem cell trophic factor production with differentiation medium components to regenerate chondral defects. Tissue Eng Part A. 2013; 19:1451–1464. PMID: 23350662. PMCID: 3638517.
Article
34. Johnstone B, Alini M, Cucchiarini M, Dodge GR, Eglin D, Guilak F, Madry H, Mata A, Mauck RL, Semino CE, Stoddart MJ. Tissue engineering for articular cartilage repair--the state of the art. Eur Cell Mater. 2013; 25:248–267. PMID: 23636950.
35. Schminke B, Miosge N. Cartilage repair in vivo: the role of migratory progenitor cells. Curr Rheumatol Rep. 2014; 16:461. PMID: 25240685. PMCID: 4169867.
Article
36. Steinert AF, Nöth U, Tuan RS. Concepts in gene therapy for cartilage repair. Injury. 2008; 39( Suppl 1):S97–S113. DOI: 10.1016/j.injury.2008.01.034. PMID: 18313477. PMCID: 2714368.
Article
37. Frisch J, Venkatesan JK, Rey-Rico A, Schmitt G, Madry H, Cucchiarini M. Determination of the chondrogenic differentiation processes in human bone marrow-derived mesenchymal stem cells genetically modified to overexpress transforming growth factor-β via recombinant adeno-associated viral vectors. Hum Gene Ther. 2014; 25:1050–1060. PMID: 25333854.
Article
38. Muthuswamy V. Ethical issues in clinical research. Perspect Clin Res. 2013; 4:9–13. PMID: 23533972. PMCID: 3601715.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr