Blood Res.  2017 Mar;52(1):10-17. 10.5045/br.2017.52.1.10.

Regulation of the embryonic erythropoietic niche: a future perspective

Affiliations
  • 1Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan. sugiyama@jsd.med.kyushu-u.ac.jp
  • 2Disciplines of Physiology, Anatomy and Histology, School of Medical Sciences, University of Sydney, Sydney, Australia.

Abstract

The production of red blood cells, termed erythropoiesis, occurs in two waves in the developing mouse embryo: first primitive erythropoiesis followed by definitive erythropoiesis. In the mouse embryo, both primitive and definitive erythropoiesis originates in the extra-embryonic yolk sac. The definitive wave then migrates to the fetal liver, fetal spleen and fetal bone marrow as these organs form. The fetal liver serves as the major organ for hematopoietic cell expansion and erythroid maturation after mid-gestation. The erythropoietic niche, which expresses critical cytokines such as stem cell factor (SCF), thrombopoietin (TPO) and the insulin-like growth factors IGF1 and IGF2, supports hematopoietic expansion in the fetal liver. Previously, our group demonstrated that DLK1⁺ hepatoblasts support fetal liver hematopoiesis through erythropoietin and SCF release as well as extracellular matrix deposition. Loss of DLK1⁺ hepatoblasts in Map2k4(−/−) mouse embryos resulted in decreased numbers of hematopoietic cells in fetal liver. Genes encoding proteinases and peptidases were found to be highly expressed in DLK1⁺ hepatoblasts. Capitalizing on this knowledge, and working on the assumption that these proteinases and peptidases are generating small, potentially biologically active peptides, we assessed a range of peptides for their ability to support erythropoiesis in vitro. We identified KS-13 (PCT/JP2010/067011) as an erythropoietic peptide-a peptide which enhances the production of red blood cells from progenitor cells. Here, we discuss the elements regulating embryonic erythropoiesis with special attention to niche cells, and demonstrate how this knowledge can be applied in the identification of niche-derived peptides with potential therapeutic capability.

Keyword

Erythropoiesis; Embryo; Niche regulation; Cytokine peptide

MeSH Terms

Animals
Bone Marrow
Cytokines
Embryonic Structures
Erythrocytes
Erythropoiesis
Erythropoietin
Extracellular Matrix
Hematopoiesis
In Vitro Techniques
Liver
Mice
Peptide Hydrolases
Peptides
Somatomedins
Spleen
Stem Cell Factor
Stem Cells
Thrombopoietin
Yolk Sac
Cytokines
Erythropoietin
Peptide Hydrolases
Peptides
Somatomedins
Stem Cell Factor
Thrombopoietin

Figure

  • Fig. 1 Erythroid cell development in the mouse embryo. The sites for primitive and definitive erythropoiesis are shown. Arrows reveal presumable pathway of hematopoietic homing.Abbreviations: AGM, Aorta-Gonad-Mesonephros; BM, Bone Marrow; E, Embryonic day; PL, Placenta; YS, Yolk Sac.

  • Fig. 2 Embryonic hematopoietic niche. (A) Hematopoietic stem cells (arrow) are surrounded by the endothelial cells. Green: KIT, Red: CD31. (B) Hematopoietic stem/progenitor cells (arrows) are surrounded by hepatoblasts (arrow heads). Green: KIT, Red: DLK1.


Reference

1. Al-Drees MA, Yeo JH, Boumelhem BB, et al. Making blood: the haematopoietic niche throughout ontogeny. Stem Cells Int. 2015; 2015:571893. PMID: 26113865.
Article
2. Palis J, Robertson S, Kennedy M, Wall C, Keller G. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development. 1999; 126:5073–5084. PMID: 10529424.
Article
3. Tavian M, Péault B. Embryonic development of the human hematopoietic system. Int J Dev Biol. 2005; 49:243–250. PMID: 15906238.
Article
4. Swain A, Inoue T, Tan KS, Nakanishi Y, Sugiyama D. Intrinsic and extrinsic regulation of mammalian hematopoiesis in the fetal liver. Histol Histopathol. 2014; 29:1077–1082. PMID: 24526457.
5. Tanaka Y, Inoue-Yokoo T, Kulkeaw K, et al. Embryonic hematopoietic progenitor cells reside in muscle before bone marrow hematopoiesis. PLoS One. 2015; 10:e0138621. PMID: 26389592.
Article
6. Medvinsky AL, Samoylina NL, Müller AM, Dzierzak EA. An early pre-liver intraembryonic source of CFU-S in the developing mouse. Nature. 1993; 364:64–67. PMID: 8316298.
Article
7. Baron MH. Early patterning of the mouse embryo: implications for hematopoietic commitment and differentiation. Exp Hematol. 2005; 33:1015–1020. PMID: 16140149.
Article
8. Baron MH, Isern J, Fraser ST. The embryonic origins of erythropoiesis in mammals. Blood. 2012; 119:4828–4837. PMID: 22337720.
Article
9. Barminko J, Reinholt B, Baron MH. Development and differentiation of the erythroid lineage in mammals. Dev Comp Immunol. 2016; 58:18–29. PMID: 26709231.
Article
10. Kumaravelu P, Hook L, Morrison AM, et al. Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development. 2002; 129:4891–4899. PMID: 12397098.
Article
11. Müller AM, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E. Development of hematopoietic stem cell activity in the mouse embryo. Immunity. 1994; 1:291–301. PMID: 7889417.
Article
12. Medvinsky A, Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell. 1996; 86:897–906. PMID: 8808625.
Article
13. Peschle C, Mavilio F, Caré A, et al. Haemoglobin switching in human embryos: asynchrony of zeta-alpha and epsilon-gamma-globin switches in primitive and definite erythropoietic lineage. Nature. 1985; 313:235–238. PMID: 2578614.
14. Bertrand JY, Jalil A, Klaine M, Jung S, Cumano A, Godin I. Three pathways to mature macrophages in the early mouse yolk sac. Blood. 2005; 106:3004–3011. PMID: 16020514.
Article
15. Sugiyama D, Tsuji K. Definitive hematopoiesis from endothelial cells in the mouse embryo; a simple guide. Trends Cardiovasc Med. 2006; 16:45–49. PMID: 16473761.
Article
16. Artus J, Douvaras P, Piliszek A, Isern J, Baron MH, Hadjantonakis AK. BMP4 signaling directs primitive endoderm-derived XEN cells to an extraembryonic visceral endoderm identity. Dev Biol. 2012; 361:245–262. PMID: 22051107.
Article
17. Fraser ST, Isern J, Baron MH. Maturation and enucleation of primitive erythroblasts during mouse embryogenesis is accompanied by changes in cell-surface antigen expression. Blood. 2007; 109:343–352. PMID: 16940424.
Article
18. Palis J, Chan RJ, Koniski A, Patel R, Starr M, Yoder MC. Spatial and temporal emergence of high proliferative potential hematopoietic precursors during murine embryogenesis. Proc Natl Acad Sci U S A. 2001; 98:4528–4533. PMID: 11296291.
Article
19. Fraser ST, Ogawa M, Yu RT, Nishikawa S, Yoder MC, Nishikawa S. Definitive hematopoietic commitment within the embryonic vascular endothelial-cadherin(+) population. Exp Hematol. 2002; 30:1070–1078. PMID: 12225799.
Article
20. Isern J, Fraser ST, He Z, Zhang H, Baron MH. Dose-dependent regulation of primitive erythroid maturation and identity by the transcription factor Eklf. Blood. 2010; 116:3972–3980. PMID: 20720183.
Article
21. Damert A, Miquerol L, Gertsenstein M, Risau W, Nagy A. Insufficient VEGFA activity in yolk sac endoderm compromises haematopoietic and endothelial differentiation. Development. 2002; 129:1881–1892. PMID: 11934854.
Article
22. Antas VI, Brigden KW, Prudence AJ, Fraser ST. Gastrokine-2 is transiently expressed in the endodermal and endothelial cells of the maturing mouse yolk sac. Gene Expr Patterns. 2014; 16:69–74. PMID: 25290738.
Article
23. Ema M, Faloon P, Zhang WJ, et al. Combinatorial effects of Flk1 and Tal1 on vascular and hematopoietic development in the mouse. Genes Dev. 2003; 17:380–393. PMID: 12569129.
24. Sasaki T, Tanaka Y, Kulkeaw K, et al. Embryonic intra-aortic clusters undergo myeloid differentiation mediated by mesonephros-derived CSF1 in mouse. Stem Cell Rev. 2016; 12:530–542. PMID: 27324145.
Article
25. Dzierzak E, Speck NA. Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol. 2008; 9:129–136. PMID: 18204427.
Article
26. Sugiyama D, Ogawa M, Hirose I, Jaffredo T, Arai K, Tsuji K. Erythropoiesis from acetyl LDL incorporating endothelial cells at the preliver stage. Blood. 2003; 101:4733–4738. PMID: 12595314.
Article
27. Garcia-Porrero JA, Manaia A, Jimeno J, Lasky LL, Dieterlen-Liévre F, Godin IE. Antigenic profiles of endothelial and hemopoietic lineages in murine intraembryonic hemogenic sites. Dev Comp Immunol. 1998; 22:303–319. PMID: 9700460.
Article
28. Garcia-Porrero JA, Godin IE, Dieterlen-Liévre F. Potential intraembryonic hemogenic sites at pre-liver stages in the mouse. Anat Embryol (Berl). 1995; 192:425–435. PMID: 8546334.
Article
29. Mizuochi C, Fraser ST, Biasch K, et al. Intra-aortic clusters undergo endothelial to hematopoietic phenotypic transition during early embryogenesis. PLoS One. 2012; 7:e35763. PMID: 22558218.
Article
30. Bigas A, Guiu J, Gama-Norton L. Notch and Wnt signaling in the emergence of hematopoietic stem cells. Blood Cells Mol Dis. 2013; 51:264–270. PMID: 23927968.
Article
31. Sasaki T, Mizuochi C, Horio Y, Nakao K, Akashi K, Sugiyama D. Regulation of hematopoietic cell clusters in the placental niche through SCF/Kit signaling in embryonic mouse. Development. 2010; 137:3941–3952. PMID: 20980401.
Article
32. Dazzi F, Ramasamy R, Glennie S, Jones SP, Roberts I. The role of mesenchymal stem cells in haemopoiesis. Blood Rev. 2006; 20:161–171. PMID: 16364518.
Article
33. Sugiyama D, Arai K, Tsuji K. Definitive hematopoiesis from acetyl LDL incorporating endothelial cells in the mouse embryo. Stem Cells Dev. 2005; 14:687–696. PMID: 16433624.
Article
34. Zeigler BM, Sugiyama D, Chen M, Guo Y, Downs KM, Speck NA. The allantois and chorion, when isolated before circulation or chorio-allantoic fusion, have hematopoietic potential. Development. 2006; 133:4183–4192. PMID: 17038514.
Article
35. Alvarez-Silva M, Belo-Diabangouaya P, Salaün J, Dieterlen-Liévre F. Mouse placenta is a major hematopoietic organ. Development. 2003; 130:5437–5444. PMID: 14507780.
Article
36. Chhabra A, Lechner AJ, Ueno M, et al. Trophoblasts regulate the placental hematopoietic niche through PDGF-B signaling. Dev Cell. 2012; 22:651–659. PMID: 22387002.
Article
37. Johnson GR, Jones RO. Differentiation of the mammalian hepatic primordium in vitro. I. Morphogenesis and the onset of haematopoiesis. J Embryol Exp Morphol. 1973; 30:83–96. PMID: 4729954.
38. Johnson GR, Moore MA. Role of stem cell migration in initiation of mouse foetal liver haemopoiesis. Nature. 1975; 258:726–728. PMID: 1207754.
Article
39. Sugiyama D, Kulkeaw K, Mizuochi C, Horio Y, Okayama S. Hepatoblasts comprise a niche for fetal liver erythropoiesis through cytokine production. Biochem Biophys Res Commun. 2011; 410:301–306. PMID: 21664343.
Article
40. Houssaint E. Differentiation of the mouse hepatic primordium. II. Extrinsic origin of the haemopoietic cell line. Cell Differ. 1981; 10:243–252. PMID: 7307077.
Article
41. Cudennec CA, Thiery JP, Le Douarin NM. In vitro induction of adult erythropoiesis in early mouse yolk sac. Proc Natl Acad Sci U S A. 1981; 78:2412–2416. PMID: 6941301.
Article
42. Ema H, Nakauchi H. Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood. 2000; 95:2284–2288. PMID: 10733497.
Article
43. Sasaki K, Sonoda Y. Histometrical and three-dimensional analyses of liver hematopoiesis in the mouse embryo. Arch Histol Cytol. 2000; 63:137–146. PMID: 10885450.
Article
44. An X, Mohandas N. Erythroblastic islands, terminal erythroid differentiation and reticulocyte maturation. Int J Hematol. 2011; 93:139–143. PMID: 21293952.
Article
45. Tanimizu N, Nishikawa M, Saito H, Tsujimura T, Miyajima A. Isolation of hepatoblasts based on the expression of Dlk/Pref-1. J Cell Sci. 2003; 116:1775–1786. PMID: 12665558.
Article
46. Hirsch E, Iglesias A, Potocnik AJ, Hartmann U, Fässler R. Impaired migration but not differentiation of haematopoietic stem cells in the absence of beta1 integrins. Nature. 1996; 380:171–175. PMID: 8600394.
47. Sugiyama D, Kulkeaw K, Mizuochi C. TGF-beta-1 up-regulates extra-cellular matrix production in mouse hepatoblasts. Mech Dev. 2013; 130:195–206. PMID: 23041440.
Article
48. Iwasaki H, Arai F, Kubota Y, Dahl M, Suda T. Endothelial protein C receptor-expressing hematopoietic stem cells reside in the perisinusoidal niche in fetal liver. Blood. 2010; 116:544–553. PMID: 20442369.
Article
49. Tan KS, Inoue T, Kulkeaw K, Tanaka Y, Lai MI, Sugiyama D. Localized SCF and IGF-1 secretion enhances erythropoiesis in the spleen of murine embryos. Biol Open. 2015; 4:596–607. PMID: 25887124.
Article
50. Coşkun S, Chao H, Vasavada H, et al. Development of the fetal bone marrow niche and regulation of HSC quiescence and homing ability by emerging osteolineage cells. Cell Rep. 2014; 9:581–590. PMID: 25310984.
Article
51. Schuster JA, Stupnikov MR, Ma G, et al. Expansion of hematopoietic stem cells for transplantation: current perspectives. Exp Hematol Oncol. 2012; 1:12. PMID: 23210618.
Article
52. Kelly SS, Sola CB, de Lima M, Shpall E. Ex vivo expansion of cord blood. Bone Marrow Transplant. 2009; 44:673–681. PMID: 19802023.
Article
53. Piacibello W, Sanavio F, Garetto L, et al. Differential growth factor requirement of primitive cord blood hematopoietic stem cell for self-renewal and amplification vs proliferation and differentiation. Leukemia. 1998; 12:718–727. PMID: 9593270.
Article
54. Heike T, Nakahata T. Ex vivo expansion of hematopoietic stem cells by cytokines. Biochim Biophys Acta. 2002; 1592:313–321. PMID: 12421675.
Article
55. Gabbianelli M, Pelosi E, Montesoro E, et al. Multi-level effects of flt3 ligand on human hematopoiesis: expansion of putative stem cells and proliferation of granulomonocytic progenitors/monocytic precursors. Blood. 1995; 86:1661–1670. PMID: 7544638.
Article
56. Yonemura Y, Ku H, Lyman SD, Ogawa M. In vitro expansion of hematopoietic progenitors and maintenance of stem cells: comparison between FLT3/FLK-2 ligand and KIT ligand. Blood. 1997; 89:1915–1921. PMID: 9058711.
Article
57. Shah AJ, Smogorzewska EM, Hannum C, Crooks GM. Flt3 ligand induces proliferation of quiescent human bone marrow CD34+CD38-cells and maintains progenitor cells in vitro. Blood. 1996; 87:3563–3570. PMID: 8611678.
58. Ku H, Yonemura Y, Kaushansky K, Ogawa M. Thrombopoietin, the ligand for the Mpl receptor, synergizes with steel factor and other early acting cytokines in supporting proliferation of primitive hematopoietic progenitors of mice. Blood. 1996; 87:4544–4551. PMID: 8639822.
Article
59. Holyoake TL, Alcorn MJ, Richmond L, et al. CD34 positive PBPC expanded ex vivo may not provide durable engraftment following myeloablative chemoradiotherapy regimens. Bone Marrow Transplant. 1997; 19:1095–1101. PMID: 9193752.
Article
60. Jaroscak J, Goltry K, Smith A, et al. Augmentation of umbilical cord blood (UCB) transplantation with ex vivo-expanded UCB cells: results of a phase 1 trial using the AastromReplicell System. Blood. 2003; 101:5061–5067. PMID: 12595310.
Article
61. de Lima M, McMannis J, Gee A, et al. Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: a phase I/II clinical trial. Bone Marrow Transplant. 2008; 41:771–778. PMID: 18209724.
Article
62. Urbano-Ispizua A, Carreras E, Marín P, et al. Allogeneic transplantation of CD34(+) selected cells from peripheral blood from human leukocyte antigen-identical siblings: detrimental effect of a high number of donor CD34(+) cells? Blood. 2001; 98:2352–2357. PMID: 11588030.
63. Singhal S, Powles R, Treleaven J, et al. A low CD34+ cell dose results in higher mortality and poorer survival after blood or marrow stem cell transplantation from HLA-identical siblings: should 2×10(6) CD34+ cells/kg be considered the minimum threshold? Bone Marrow Transplant. 2000; 26:489–496. PMID: 11019837.
64. Wagner JE, Barker JN, DeFor TE, et al. Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood. 2002; 100:1611–1618. PMID: 12176879.
Article
65. Nakano T, Kodama H, Honjo T. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science. 1994; 265:1098–1101. PMID: 8066449.
Article
66. Nishikawa SI, Nishikawa S, Hirashima M, Matsuyoshi N, Kodama H. Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development. 1998; 125:1747–1757. PMID: 9521912.
Article
67. Kulkeaw K, Horio Y, Mizuochi C, Ogawa M, Sugiyama D. Variation in hematopoietic potential of induced pluripotent stem cell lines. Stem Cell Rev. 2010; 6:381–389. PMID: 20401546.
Article
68. Lim WF, Inoue-Yokoo T, Tan KS, Lai MI, Sugiyama D. Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells. Stem Cell Res Ther. 2013; 4:71. PMID: 23796405.
Article
Full Text Links
  • BR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr