1. Giamarellou H, Poulakou G. Multidrug-resistant Gram-negative infections: what are the treatment options? Drugs. 2009; 69:1879–1901.
2. Docobo-Pérez F, Nordmann P, Domínguez-Herrera J, López-Rojas R, Smani Y, Poirel L, et al. Efficacies of colistin and tigecycline in mice with experimental pneumonia due to NDM-1-producing strains of
Klebsiella pneumoniae and
Escherichia coli. Int J Antimicrob Agents. 2012; 39:251–254.
Article
3. Lin YT, Wang FD, Chan YJ, Fu YC, Fung CP. Clinical and microbiological characteristics of tigecycline non-susceptible Klebsiella pneumoniae bacteremia in Taiwan. BMC Infect Dis. 2014; 14:1.
4. Sun Y, Cai Y, Liu X, Bai N, Liang B, Wang R. The emergence of clinical resistance to tigecycline. Int J Antimicrob Agents. 2013; 41:110–116.
Article
5. Akiyama T, Presedo J, Khan AA. The tetA gene decreases tigecycline sensitivity of
Salmonella enterica isolates. Int J Antimicrob Agents. 2013; 42:133–140.
Article
6. Tuckman M, Petersen PJ, Projan SJ. Mutations in the interdomain loop region of the
tetA(A) tetracycline resistance gene increase efflux of minocycline and glycylcyclines. Microb Drug Resist. 2000; 6:277–282.
Article
7. Villa L, Feudi C, Fortini D, García-Fernández A, Carattoli A. Genomics of KPC-producing
Klebsiella pneumoniae sequence type 512 clone highlights the role of
ramR and ribosomal S10 protein mutations in conferring tigecycline resistance. Antimicrob Agents Chemother. 2014; 58:1707–1712.
Article
8. Hentschke M, Wolters M, Sobottka I, Rohde H, Aepfelbacher M.
ramR mutations in clinical isolates of
Klebsiella pneumoniae with reduced susceptibility to tigecycline. Antimicrob Agents Chemother. 2010; 54:2720–2723.
Article
9. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: 21st informational supplement (M100-S21). Wayne, PA: CLSI;2011.
10. Chiu SK, Wu TL, Chuang YC, Lin JC, Fung CP, Lu PL, et al. National surveillance study on carbapenem non-susceptible Klebsiella pneumoniae in Taiwan: the emergence and rapid dissemination of KPC-2 carbapenemase. PLoS One. 2013; 8:e69428.
11. Ovejero CM, Hidalgo L, Gutierrez B, Carrilero L, Santos-Lopez A, Thomas-Lopez D, et al. Human adapted Klebsiella pneumoniae ST11 and ST147 resistant to tigecycline from pet animal. In : Poster presentado en Med-Vet-Net Association International Scientific Conference 2013; 2013 Jun 24-25; Lyngby.
12. Rubio FG, Oliveira VD, Rangel RM, Nogueira MC, Almeida MT. Trends in bacterial resistance in a tertiary university hospital over one decade. Braz J Infect Dis. 2013; 17:480–482.
Article
13. Spanu T, De Angelis G, Cipriani M, Pedruzzi B, D'Inzeo T, Cataldo MA, et al.
In vivo emergence of tigecycline resistance in multidrug-resistant
Klebsiella pneumoniae and
Escherichia coli. Antimicrob Agents Chemother. 2012; 56:4516–4518.
Article
14. Landman D, Bratu S, Kochar S, Panwar M, Trehan M, Doymaz M, et al. Evolution of antimicrobial resistance among
Pseudomonas aeruginosa,
Acinetobacter baumannii and
Klebsiella pneumoniae in Brooklyn, NY. J Antimicrob Chemother. 2007; 60:78–82.
Article
15. Pakzad I, Zayyen Karin M, Taherikalani M, Boustanshenas M, Lari AR. Contribution of AcrAB efflux pump to ciprofloxacin resistance in Klebsiella pneumoniae isolated from burn patients. GMS Hyg Infect Control. 2013; 8:Doc15.
16. Bialek-Davenet S, Leflon-Guibout V, Tran Minh O, Marcon E, Moreau R, Nicolas-Chanoine MH. Complete deletion of the
ramR gene in an
in vitro-selected mutant of
Klebsiella pneumoniae overexpressing the AcrAB efflux pump. Antimicrob Agents Chemother. 2013; 57:672–673.
Article
17. Seecoomar GD, Marmol BC, Kwon DH. Promoter deletions of
Klebsiella pneumoniae carbapenemase (KPC)-encoding genes (
blaKPC-2) and efflux pump (AcrAB) on β-lactam susceptibility in KPC-producing Enterobacteriaceae. FEMS Microbiol Lett. 2013; 348:120–126.
Article
18. Padilla E, Llobet E, Doménech-Sánchez A, Martínez-Martínez L, Bengoechea JA, Albertí S. Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence. Antimicrob Agents Chemother. 2010; 54:177–183.
Article
19. Shin SY, Bae IK, Kim J, Jeong SH, Yong D, Kim JM, et al. Resistance to carbapenems in sequence type 11
Klebsiella pneumoniae is related to DHA-1 and loss of OmpK35 and/or OmpK36. J Med Microbiol. 2012; 61(Pt 2):239–245.
Article
20. Ko KS, Lee JY, Baek JY, Suh JY, Lee MY, Choi JY, et al. Predominance of an ST11 extended-spectrum beta-lactamase-producing
Klebsiella pneumoniae clone causing bacteraemia and urinary tract infections in Korea. J Med Microbiol. 2010; 59(Pt 7):822–828.
Article
21. Qi Y, Wei Z, Ji S, Du X, Shen P, Yu Y. ST11, the dominant clone of KPC-producing Klebsiella pneumoniae in China. J Antimicrob Chemother. 2011; 66:307–312.