J Korean Med Sci.  2008 Feb;23(1):53-60. 10.3346/jkms.2008.23.1.53.

Clonal Dissemination of Extended-Spectrum beta-Lactamase (ESBL)-Producing Klebsiella pneumoniae Isolates in a Korean Hospital

Affiliations
  • 1Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.
  • 2Asian-Pacific Research Foundation for Infectious Diseases (ARFID), Seoul, Korea.
  • 3Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea.
  • 4Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. songjh@skku.edu

Abstract

In this study, we investigated the molecular characteristics of extended-spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae isolates that were recovered from an outbreak in a Korean hospital. A new multilocus sequence typing (MLST) scheme for K. pneumoniae based on five housekeeping genes was developed and was evaluated for 43 ESBL-producing isolates from an outbreak as well as 38 surveillance isolates from Korea and also a reference strain. Overall, a total of 37 sequence types (STs) and six clonal complexes (CCs) were identified among the 82 K. pneumoniae isolates. The result of MLST analysis was concordant with that of pulsedfield gel electrophoresis. Most of the outbreak isolates belonged to a certain clone (ST2), and they produced SHV-1 and CTX-M14 enzymes, which was a different feature from that of the K. pneumoniae isolates from other Korean hospitals (ST20 and SHV-12). We also found a different distribution of CCs between ESBL-producing and -nonproducing K. pneumoniae isolates. The MLST method we developed in this study could provide unambiguous and well-resolved data for the epidemiologic study of K. pneumoniae. The outbreak isolates showed different molecular characteristics from the other K. pneumoniae isolates from other Korean hospitals.

Keyword

Klebsiella pneumoniae; Extended-Spectrum beta-Lactamase (ESBL); Multilocus Sequence Typing (MLST); Pused-Field Gel Electrophoresis (PFGE)

MeSH Terms

Electrophoresis, Gel, Pulsed-Field
Hospitals
Humans
Klebsiella pneumoniae/*classification/enzymology/genetics/isolation & purification
Sequence Analysis, DNA
beta-Lactamases/*biosynthesis
Mycobacteria, Atypical/*drug effects/genetics/isolation & purification

Figure

  • Fig. 1 eBURST analysis of MLST.

  • Fig. 2 PFGE patterns of outbreak isolates from Kangbuk Samsung Hospital. M, size marker; 1, KS409-1; 2, KS409-2; 3, KS411-3; 4, KS411-4; 5, KS411-5; 6, KS411-6; 7, KS411-7; 8, KS411-8; 9, KS411-9; 10, KS411-10; 11, KS411-11; 12, KS411-12; 13, KS421-1; 14, KS412-2; 15, KS412-3; 16, KS412-4; 17, KS412-5; 18, KS412-6; 19, KS412-7; 20, KS412-8; 21, KS412-9; 22, KS501-1; 23, KS501-2; 24, KS501-3; 25, KS501-4; 26, KS501-5; 27, KS501-6; 28, KS501-7; 29, KS501-8; 30, KS502-1; 31, KS502-2; 32, KS502-3; 33, KS502-4; 34, KS502-5; 35, KS502-6; 37, 502-8; 38, KS411-2; 39, KS411-1; 40, KS504-1; 41, KS505-1; 42, KS505-2; 43, KS506-3.


Reference

1. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998. 11:589–603.
Article
2. Spencer RC. Predominant pathogens found in the European Prevalence of Infection in Intensive Care Study. Eur J Clin Microbiol Infect Dis. 1996. 15:281–285.
Article
3. Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001. 14:933–951.
Article
4. Pitout JD, Nordmann P, Laupland KB, Poirel L. Emergence of Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBLs) in the community. J Antimicrob Chemother. 2005. 56:52–59.
5. de Almeida VA, Pessoa-Silva CL, Sampaio JL, Gontijo Filho PP, Teixeira LM, Moreira BM. Genetic relatedness among extendedspectrum β-lactamase-producing Klebsiella pneumoniae outbreak isolates associated with colonization and invasive disease in a neonatal intensive care unit. Microb Drug Resist. 2005. 11:21–25.
6. Li CR, Li Y, Zhang PA. Dissemination and spread of CTX-M extended-spectrum beta-lactamases among clinical isolates of Klebsiella pneumoniae in central China. Int J Antimicrob Agents. 2003. 22:521–525.
7. van der Zee A, Steer N, Thijssen E, Nelson J, van't Veen A, Buiting A. Use of multienzyme multiplex PCR amplified fragment length polymorphism typing in analysis of outbreaks of multiresistant Klebsiella pneumoniae in an intensive care unit. J Clin Microbiol. 2003. 41:798–802.
Article
8. Aanensen DM, Spratt BG. The multilocus sequence typing network: mlst.net. Nucleic Acids Res. 2005. 33:W728–W733.
Article
9. Enright MC, Spratt BG. A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease. Microbiology. 1998. 144:3049–3060.
Article
10. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG. Multilocus sequence typing: a portable approach to identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA. 1998. 95:3140–3145.
11. Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol. 2000. 38:1008–1015.
12. Homan WL, Tribe D, Poznanski S, Li M, Hogg G, Spalburg E, van Embden JD, Willems RJ. Multilocus sequence typing scheme for Enterococcus faecium. J Clin Microbiol. 2002. 40:1963–1971.
Article
13. Dingle KE, Colles FM, Wareing DR, Ure R, Fox AJ, Bolton FE, Bootsma HJ, Willems RJ, Urwin R, Maiden MC. Multilocus sequence typing system for Campylobacter jejuni. J Clin Microbiol. 2001. 39:14–23.
Article
14. Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol. 2005. 43:4178–4182.
Article
15. Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing. J Bacteriol. 2004. 186:1518–1530.
16. Ota T, Nei M. Variance and covariances of the numbers of synonymous and nonsynonymous nucleotide substitutions per site. Mol Biol Evol. 1994. 11:613–619.
17. Maynard Smith J, Smith NH, O'Rourke M, Spratt BG. How clonal are bacteria? Proc Natl Acad Sci USA. 1993. 90:4384–4388.
18. Ko KS, Baek JY, Lee JY, Oh WS, Peck KR, Lee N, Lee WG, Lee K, Song JH. Molecular characterization of vancomycin-resistant Enterococcus faecium isolated from Korea. J Clin Microbiol. 2005. 43:2303–2306.
19. Oh WS, Suh JY, Song JH, Ko KS, Jung SI, Peck KR, Lee NY, Yang Y, Chongthaleong A, Chiu CH, Kamarulzaman A, Parasakthi N, Lalitha MK, Perera J, Yee TT, Kumarasinghe G, Carlos CC. Fluoroquinolone resistance in clinical isolates of Streptococcus pneumoniae from Asian countries: ANSORP study. Microb Drug Resist. 2004. 10:37–42.
20. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995. 33:2233–2239.
Article
21. Kim J, Lim YM, Rheem I, Lee Y, Lee JC, Seol SY, Lee YC, Cho DT. CTX-M and SHV-12 β-lactamases are the most common extended-spectrum enzymes in clinical isolates of Escherichia coli and Klebsiella pneumoniae collected from 3 university hospitals within Korea. FEMS Microbiol Lett. 2005. 245:93–98.
22. Cooper JE, Feil EJ. Multilocus sequence typing - what is resolved? Trends Microbiol. 2004. 12:373–377.
Article
23. Urwin R, Maiden MC. Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol. 2003. 11:479–487.
Article
24. Feil EJ, Smith JM, Enright MC, Spratt BG. Estimating recombinational parameters in Streptococcus pneumoniae from multilocus sequence typing data. Genetics. 2000. 154:1439–1450.
Article
25. Feil EJ, Cooper JE, Grundmann H, Robinson DA, Enright MC, Berendt T, Peacock SJ, Smith JM, Murphy M, Spratt BG, Moore CE, Day NP. How clonal is Staphylococcus aureus? J Bacteriol. 2003. 185:3307–3316.
Article
26. Jeong SH, Bae IK, Lee JH, Sohn SG, Kang GH, Jeon GJ, Kim YH, Jeong BC, Lee SH. Molecular characterization of extended-spectrum beta-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli from a Korean nationwide survey. J Clin Microbiol. 2004. 42:2902–2906.
Article
27. Katayama Y, Robinson DA, Enright MC, Chambers HF. Genetic background affects stability of mecA in Staphylococcus aureus. J Clin Microbiol. 2005. 43:2380–2383.
Article
28. Oliveira DC, Tomasz A, de Lencastre H. Secrets of success of a human pathogen: molecular evolution of pandemic clones of methicillin-resistant Staphylococcus aureus. Lancet Infect Dis. 2002. 2:180–189.
29. Mollet C, Drancourt M, Raoult D. rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol. 1997. 26:1005–1011.
30. Wertz JE, Goldstone C, Gordon DM, Riley MA. A molecular phylogeny of enteric bacteria and implications for a bacterial species concept. J Evol Biol. 2003. 16:1236–1248.
Article
Full Text Links
  • JKMS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr