1). Al-Hamad A, Burnie J, Upton M. Enhancement of antibiotic susceptibility of Stenotrophomonas maltophilia using a polyclonal antibody developed against an ABC multidrug efflux pump. Can J Microbiol. 2011; 57:820–8.
2). Caylan R, Kaklikkaya N, Aydin K, Aydin F, Yilmaz G, Ozgumus B, et al. An epidemiological analysis of Stenotrophomonas maltophilia strains in a university hospital. Jpn J Infect Dis. 2004; 57:37–40.
3). Gülmez D, Hascelik G. Stenotrophomonas maltophilia: antimicrobial resistance and molecular typing of an emerging pathogen in a Turkish university hospital. Clin Microbiol Infect. 2005; 11:880–6.
4). Fedler KA, Biedenbach DJ, Jones RN. Assessment of pathogen frequency and resistance patterns among paediatric patient isolates: report from the 2004 SENTRY Antimicrobial Surveillance Program on three continents. Diagn Microbiol Infect Dis. 2006; 56:427–36.
5). Barchitta M, Cipresso R, Giaquinta L, Romeo MA, Denaro C, Pennisi C, et al. Acquisition and spread of Acinetobacter baumannii and Stenotrophomonas maltophilia in intensive care patients. Int J Hyg Environ Health. 2009; 212:330–7.
6). Rhee JY, Choi JY, Choi MJ, Song JH, Peck KR, Ko KS. Distinct groups and antimicrobial resistance of clinical Stenetrophomonas maltophilia complex isolates from Korea. J Med Microbiol. 2013; 62:748–53.
7). Ma L, Borio L, Masur H, Kovacs JA. Pneumocystis carinii dihydropteroate synthase but not dihydrofolate reductase gene mutations correlate with prior trimethoprim-sulfamethoxazole or dapsone use. J Infect Dis. 1999; 180:1969–78.
8). Coque TM, Singh KV, Weinstock GM, Murray BE. Characterization of dihydrofolate reductase genes from trimethoprim-susceptible and trimethoprim-resistant strains of Enterococcus faecalis. Antimicrob Agents Chemother. 1999; 43:141–7.
9). Hu LF, Chang X, Ye Y, Wang ZX, Shoa YB, Shi W, et al. Stenotrophomonas maltophilia resistance to trimethoprim/sulfamethoxazole mediated by acquisition of sul and dfr A genes in a plasmid-mediated class 1 integron. Int J Antimicrob Agents. 2011; 37:230–4.
10). Kalkut G. Sulfonamides and trimethoprim. Cancer Invest. 1998; 16:612–5.
Article
11). Ziha-Zarifi I, Llanes C, Köhler T, Pechere JC, Plesiat P. In vivo emergence of multidrug-resistant mutants of Pseudomonas aeruginosa overexpressing the active efflux system MexA-MexB-OprM. Antimicrob Agents Chemother. 1999; 43:287–91.
12). Coldham NG, Webber M, Woodward MJ, Piddock LJ. A 96-well plate fluorescence assay for assessment of cellular permeability and active efflux in Salmonella enterica serovar Typhimurium and Escherichia coli. J Antimicrob Chemother. 2010; 65:1655–63.
13). Baugh S, Ekanayaka AS, Piddock LJ, Webber MA. Loss of or inhibition of all multidrug resistance efflux pumps of Salmonella enterica serovar Typhimurium results in impaired ability to form a biofilm. J Antimicrob Chemother. 2012; 67:2409–17.
14). Falagas ME, Valkimadi PE, Huang YT, Matthaiou DK, Hsueh PR. Therapeutic options for Stenotrophomonas maltophilia infections beyond co-trimoxazole: a systemic review. J Antimicrob Chemother. 2008; 62:889–94.
15). Alonso A, Martinez JL. Expression of multidrug efflux pump SmeDEF by clinical isolates of Stenotrophomonas maltophilia. Antimicrob Agents Chemother. 2001; 45:1879–81.
16). Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically M07-A8; Approved Standard-Eighth Edition, Wayne, PA: CLSI. 2009.
17). Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing, 21st informational supplement, M100-S21. Wayne, PA: CLSI. 2011.
18). Hu LF, Chen GS, Kong QX, Gao LP, Chen X, Ye Y, et al. Increase in the prevalence of resistance determinants to trimethoprim/sulfamethoxazole in clinical Stenotrophomonas maltophilia isolates in China. PLoS One. 2016; 11:e015693.
19). Coldham NG, Webber M, Woodward MJ, Piddock LJ. A 96-well plate fluorescence assay for assessment of cellular permeability and active efflux in Salmonella enterica serovar Typhimurium and Escherichia coli. J Antimicrob Chemother. 2010; 65:1655–63.
20). Zhang L, Li XZ, Poole K. SmeDEF Multidrug Efflux Pump Contributes to Intrinsic Multidrug Resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother. 2001; 45:3497–503.
21). Cortez-Cordova J, Kumar A. Activity of the efflux pump inhibitor phenylalanine-arginine β-naphthylamide against the AdeFGH pump of Acinetobacter baumannii. Int J Antimicrob Agents. 2011; 37:420–4.
22). Mamelli L, Amoros JP, Pagès JM, Bolla JM. A phenylalanine-arginine β-naphthylamide sensitive multidrug efflux pump involved in intrinsic and acquired resistance of Campylobacter to macrolides. Int J Antimicrob Agents. 2003; 22:237–41.
23). Garvey MI, Piddock LJ. The Efflux Pump Inhibitor Reserpine Selects Multidrug-Resistant Streptococcus pneumoniae Strains That Overexpress the ABC Transporters PatA and PatB. Antimicrob Agents Chemother. 2008; 52:1677–85.
24). Ito M, Ohnishi Y, Itoh S, Nishimura M. Carbonyl cyanide-m-chlorophenyl hydrazone-resistant Escherichia coli mutant that exhibits a temperature-sensitive unc phenotype. J Bacteriol. 1983; 153:310–5.
25). Ramón-García S, Martín C, Thompson CJ, Aínsa JA. Role of the Mycobacterium tuberculosis P55 efflux pump in intrinsic drug resistance, oxidative stress responses, and growth. Antimicrob Agents Chemother. 2009; 53:3675–82.
26). Ghoul M, Pommepuy M, Moillo-Batt A, Cormier M. Effect of carbonyl cyanide m-chlorophenylhydrazone on Escherichia coli halotolerance. Appl Environ Microbiol. 1989; 55:1040–3.
27). Banerjee SK, Bhatt K, Rana S, Misra P, Chakraborti PK. Involvement of an efflux system in mediating high level of fluoroquinolone resistance in Mycobacterium smegmatis. Biochem Biophys Res Commun. 1996; 226:362–8.