Nat Prod Sci.  2016 Sep;22(3):220-224. 10.20307/nps.2016.22.3.220.

Anti-Helicobacter pylori Compounds from Polygonum cuspidatum

Affiliations
  • 1College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Korea. amj5812@gnu.ac.kr

Abstract

Anti-Helicobacter pylori activity guided fractionation led to the isolation of five anthraquinones, two stilbenes and one naphthoquinone from the EtOAc fraction of Polygonum cuspidatum, using silica gel column chromatography, Sephadex-LH20, MPLC and recrystallization. The chemical structures were identified to be physcion (1), emodin (2), anthraglycoside B (3), trans-resveratrol (4), anthraglycoside A (5), polydatin (6), 2-methoxy-6-acetyl-7-methyljuglone (7) and citreorosein (8) by UV, ¹H-NMR, ¹³C-NMR and mass spectrometry. Anti-Helicobacter pylori activity including MIC values of each compound was evaluated. All of the isolates exhibited anti-H. pylori activity of which MIC values were lower than that of a positive control, quercetin. Compounds 2 and 7 showed potent growth inhibitory activity. Especially, a naphthoquinone, compound 7 displayed most potent antibacterial activity with MICâ‚…â‚€ value of 0.30 µM and MIC₉₀ value of 0.39 µM. Although anti-H. pylori activity of this plant was previously reported, this is the first report on that of compounds isolated from this species. From these findings, P. cuspidatum roots or its isolates may be useful for H. pylori infection and further study is needed to elucidate mechanism of action.

Keyword

Polygonum cuspidatum; Anti-Helicobacter pylori activity; Emodin; 2-Methoxy-6-acetyl-7-methyljuglone

MeSH Terms

Anthraquinones
Chromatography
Emodin
Fallopia japonica*
Mass Spectrometry
Plants
Polygonum*
Quercetin
Silica Gel
Stilbenes
Anthraquinones
Emodin
Quercetin
Silica Gel
Stilbenes

Figure

  • Fig. 1. Chemical structures of compounds 1–8 isolated from the roots of Polygonum cuspidatum.


Reference

(1). Goodwin C. S., Armstrong J. A., Chilvers T., Peters M., Collins M. D., Sly L., McConnell W., Harper W. E. S.Int. J. Syst. Bacteriol. 1989; 39:397–405.
(2). Uemura N., Okamoto S., Yamamoto S., Matsumura N., Yamaguchi S., Yamakido M., Taniyama K., Sasaki N., Schlemper R. J. N. Engl. J.Med. 2001; 345:784–789.
(3). Boquet P., Ricci V., Galmiche A., Gauthier N. C.Trends Microbiol. 2003; 11:410–413.
(4). Warren J. R., Marshall B.Lancet. 1983; 321:1273–1275.
(5). Blaser M. J.EMBO Rep. 2006; 7:956–960.
Article
(6). Dore M. P., Lu H., Graham D. Y.Gut. 2016; Epub ahead of print.
(7). Wang J., Li W. T., Zheng Y. X., Zhao S. S., Li N., Huang Y., Zhou R. R., Huang Z. B., Fan X. G.Gastroenterol. Res. Pract. 2016; Epub ahead of print.
(8). Malfertheiner P., Selgrad M.Curr. Opin. Gastroenterol. 2014; 30:589–595.
(9). Dos Santos A. A., Carvalho A. A.World J. Gastroenterol. 2015; 21:139–154.
(10). Austin A., Jegadeesan M., Gowrishankar R.Nat. Prod. Sci. 2003; 9:1–3.
(11). Arichi H., Kimura Y., Okuda H., Baba K., Kozawa M., Arichi S.Chem. Pharm. Bull. 1980; 30:1766–1770.
(12). Su P. W., Yang C. -H., Yang J. -F., Su P. Y., Chuang L. Y.Molecules. 2015; 20:11119–11130.
(13). Zhang W. T., Jia Y., Huang Q. W., Li Q., Bi K. S.Chromatographia. 2007; 66:685–689.
(14). Jiangsu New Medical College. Dictionary of Chinese Materia Medica; Science and Technology Press: China. 1977; 1329–1331.
(15). Zhang H., Li C., Kwok S. T., Zhang Q. W., Chan S. W.Evid. Based Complement. Alternat. Med. 2013; 208349.
(16). Peng W., Qin R., Li X., Zhou H. J.Ethnopharmacol. 2013; 148:729–745.
(17). Lin C. J., Lin H. J., Chen T. H., Hsu Y. A., Liu C. S., Hwang G. Y., Wan L.PLoS One. 2015; 10:e0117602.
(18). Lee C. C., Chen Y. T., Chiu C. C., Liao W. T., Liu Y. C., David Wang H. M. J.Biosci. Bioeng. 2015; 119:464–469.
(19). Su P. W., Yang C. -H., Yang J. -F., Su P. Y., Chuang L. Y.Molecules. 2015; 20:11119–11130.
(20). Park W. S., Bae J. -Y., Kim H. J., Kim M. K., Lee W. K., Kang H. -L., Baik S. C., Lim K. M., Lee M. K., Ahn M.-J. Nat. Prod. Sci. 2015; 21:49–53.
(21). Amin M., Anwer M., Naz F., Mehmood T., Saari N.Molecules. 2013; 18:2135–2149.
(22). Yang Lu. In Introduction to Natural Product Chemistry: Anthraquinones. Renheng X. U., Yang Y., Zhao W., editorsCRC press;USA: 2012; 10:189–203.
(23). Chu X., Sun A., Liu R. J.Chromatogr. A. 2005; 1097:33–39.
(24). Sivakumar B., Murugan R., Baskaran A., Khadangale B. P., Murugan S., Senthilkumar U. P.Sci. Pharm. 2013; 81:683–695.
(25). Zhang W., Ye M., Zhan J., Chen Y., Guo D.Biotechnol. Lett. 2004; 26:127–131.
(26). Kimura Y., Kozawa M., Baba K., Hata K.Planta Med. 1983; 48:164–168.
(27). Brown J. C., Wang J., Kasman L., Jiang X., Haley-Zitlin V. J.Appl. Microbiol. 2011; 110:139–146.
(28). Park B. S., Lee H. K., Lee S. E., Piao X. L., Takeoka G. R., Wong R. Y., Ahn Y. J., Kim J. H. J.Ethnopharmacol. 2006; 105:255–262.
(29). Skouloubris S., Djaout K., Lamarre I., Lambry J. C., Anger K., Briffotaux J., Liebl U., de Reuse, H. and Myllykallio H.Open Biol. 2015; 5:150015.
(30). Lee I. -S., Im H. G., Lee S.Korean J. Food Sci. Technol. 2003; 35:1182–1187.
Full Text Links
  • NPS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr