Alves D., Duarte I. Involvement of ATP-sensitive K+ channels in the peripheral antinociceptive effect induced by dipyrone. Eur J Pharmacol. 444:47–52. 2002.
Asomoza-Espinosa R., Alonso-Lopez R. Mixcoatl-Zecuatl T., Aguirre-Banuelos P., Torres-Lopez JE., Granados-Soto V. Sildenafil increases diclofenac antinociception in the formalin test. Eur J Pharmacol. 418:195–200. 2001.
Article
Bodi I., Mikala G., Koch SE., Akhter SA., Schwartz A. The L-type calcium channel in the heart: the beat goes on. J Clin Invest. 115:3306–3317. 2005.
Article
Bort R., Ponsoda X., Jover R., Gomez-Lechon MJ., Castell JV. Diclofenac toxicity to hepatocytes: a role for drug metabolism in cell toxicity. J Pharmacol Exp Ther. 288:65–72. 1998.
Brater DC. Renal effects of cyclooxygyenase-2-selective inhibitors. J Pain Sympt Management. 23:S15–S20. 2002.
Article
Cha TJ., Ehrlich JR., Zhang L., Shi YF., Tardif JC., Leung TK., Nattel S. Dissociation between remodeling and ability to sustain atrial fibrillation during recovery from experimental congestive heart failure. Circulation. 109:412–418. 2004.
Dalla Libera L., Vescovo G., Volterrani M. Physiological basis for contractile dysfunction in the heart failure. Curr Pharm Design. 14:2572–2581. 2008.
Doering CJ., Zamponi GW. Molecular pharmacology of high voltage-activated calcium channels. J Bioenerg and Biomem. 35:491–505. 2003.
Article
Fei XW., Liu LY., Xu JG., Zhang ZH., Mei YA. The non-steroidal anti-inflammatory drug, diclofenac, inhibits Na+ current in rat myoblasts. Biochem Biophys Res Commun. 346:1275–1283. 2006.
Ferrier GR., Howlett SE. Contractions in guinea-pig ventricular myocytes triggered by a calcium-release mechanism separate from Na+ and L-currents. J Physiol. 484:107–122. 1995.
Ferrier GR., Redondo IM., Mason CA., Mapplebeck C., Howlett SE. Regulation of contraction and relaxation by membrane potential in cardiac ventricular myocytes. Am J Physiol. 278:H1618–H1626. 2000.
Fu J., Gao J., Pi R., Liu P. An optimized protocol for culture of cardiomyocytes from neonatal rat. Cytotechnol. 49:109–116. 2005.
Graham DJ. COX-2 inhibitors, other NSAIDs, and cardiovascular risk: the seduction of common sense. J Am Med Assoc. 296:1653–1656. 2006.
Hobai IA., Howarth FC., Pabbathi VK., Dalton GR., Hancox JC., Zhu JQ., Howlett SE., Ferrier GR., Levi AJ. Voltage-activated Ca2+ release in rabbit, rat and guinea-pig cardiac myocytes, and modulation by internal cAMP. Pflugers Arch. 435:164–173. 1997.
Hombach V. Electrocardiography of the failing heart. Cardiol Clin. 24:413–426. 2006.
Article
Howlett SE., Zhu JQ., Ferrier GR. Contribution of a voltage-sensitive calcium release mechanism to contraction in cardiac ventricular myocytes. Am J Physiol. 274:H155–H170. 1998.
Hudson M., Rahme E., Richard H., Pilote L. Risk of congestive heart failure with nonsteroidal anti-inflammatory drugs and selective cyclooxygenase 2 inhibitors: a class effect? Arthritis and Rheumatism. 57:516–523. 2007.
Article
Katsube Y., Yokoshiki H., Nguyen L., Yamamoto M., Sperelakis N. L-type Ca
2+ currents in ventricular myocytes from neonatal and adult rats. Can J Physiol Pharmacol. 76:873–881. 1998.
Article
Kearney PM., Baigent C., Godwin J., Halls H., Emberson JR., Patrono C. Do selective cyclo-oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials. Br Med J. 332:1302–1308. 2006.
Article
Larsen JK., Mitchell JW., Best PM. Quantitative analysis of the expression and distribution of calcium channel α1 subunit mRNA in the atria and ventricles of the rat heart. J Mol Cell Cardiol. 34:519–532. 2002.
Lee HM., Kim HI., Shin YK., Lee CS., Park M., Song JH. Diclofenac inhibition of sodium currents in rat dorsal root ganglion neurons. Brain Research. 992:120–127. 2003.
Article
Lee JH., Gomora JC., Cribbs LL., Perez-Reyes E. Nickel block of three cloned T-type calcium channels: low concentrations selectively block a1H. Biophys J. 77:3034–3042. 1999.
Leucuta A., Vlase L., Farcau D., Nanulescu M. No effect of short term ranitidine intake on diclofenac pharmakinetics. Rom J Gastroenterol. 13:306–308. 2004.
Lindner M., Erdmann E., Beuckelmann DJ. Calcium content of the sarcoplasmic reticulum in isolated ventricular myocytes from patients with terminal heart failure. J Mol Cell Cardiol. 30:743–749. 1998.
Article
Liu LY., Fei XW., Li ZM., Zhang ZH., Mei YA. Diclofenac, a nonsteroidal anti-inflammatory drug, activates the transient outward K+ current in rat cerebellar granule cells. Neuropharmacol. 48:918–926. 2005.
Maltsev VA., Sabbab HN., Undrovinas AI. Down-regulation of sodium current in chronic heart failure: effect of long-term therapy with carvediol. Cell Mol Life Sci. 59:1561–1568. 2002.
McGettigan P., Henry D. Cardiovascular risk and inhibition of cyclooxygenase: a systemic review of the observational studies of selective and nonselective inhibitors of cyclooxygenase-2. J Am Med Assoc. 296:1633–1644. 2006.
Morales MA., Inostroza L., Salazar T., Paeile C. Effects of clonixin on the electrical activity of cardiac pacemaker cells. Gen Pharmacol. 23:515–521. 1992.
Article
Morales MA., Salazar T., Paeile C. Effects of flunixin and mefenamic acid on cardiac pacemaker cells. Structure-activity relationship and comparison with clonixin. Gen Pharmacol. 24:775–780. 1993.
Article
Nawrath H., Klein G., Rupp J., Wegener JRW., Shainberg A. Open state block by fendiline of L-type Ca2+ channels in ventricular myocytes from rat heart. J Pharmacol Exp Ther. 285:546–552. 1998.
Ortiz MI., Torres-Lopez JE., Castaneda-Hernandez G., Rosas R., Vidal-Cantu GC., Granados-Soto V. Pharmacological evidence for the activation of K+ channels by diclofenac. Eur J Pharmacol. 438:85–91. 2002.
Perez-Reyes E. Molecular characterization of a novel family of low voltage-activated, T-type, calcium channels. J Bioenerg Biomem. 30:313–318. 1998.
Perez-Reyes E., Lee JH., Cribbs LL. Molecular characterization of two members of the T-type calcium channel family. Ann N Y Acad Sci. 868:131–143. 1999.
Article
Pieske B., Maier LS., Bers DM., Hasenfuss G. Ca2+ handling and sarcoplasmic reticulum Ca2+ content in isolated failing and nonfailing human myocardium. Circ Res. 85:38–46. 1999.
Pinto JM., Boyden PA. Electrical remodeling in ischemia and infarction. Cardiovasc Res. 42:284–297. 1999.
Article
Tan HL., Bink-Boelkens MT., Bezzina CR., Viswanathan PC., Beaufort-Krol GC., van Tintelen PJ., van den Berg MP., Wilde AA., Balser JR. A sodium channel mutation causes isolated cardiac conduction disease. Nature. 409:1043–1047. 2001.
Tonussi CR., Ferreira SH. Mechanism of diclofenac analgesia: direct blockade of inflammatory sensitization. Eur J Pharmacol. 251:173–179. 1994.
Article
Waksman JC., Brody A., Phillips SD. Nonselective nonsteroidal anti-inflammatory drugs and cardiovascular risk: are they safe? Ann Pharmacother. 41:1163–1173. 2007.
Article
Willis JV., Kendall MJ., Flinn RM., Thornhill DP., Welling PG. The pharmacokinetics of diclofenac sodium following intravenous and oral administration. Eur J Clin Pharmacol. 16:405–410. 1979.
Article
Yang YC., Kuo CC. An inactivation stabilizer of the Na+ channel acts as an opportunistic pore blocker modulated by external Na+. J Gen Physiol. 125:465–481. 2005.
Zhu JQ., Ferrier GR. Regulation of a voltage-sensitive release mechanism by Ca2+-calmodulin dependent kinase in cardiac myocytes. Am J Physiol. 279:H2104–H2115. 2000.