Chonnam Med J.  2012 Aug;48(2):91-95. 10.4068/cmj.2012.48.2.91.

Nosocomial Pseudomonas putida Bacteremia: High Rates of Carbapenem Resistance and Mortality

Affiliations
  • 1Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea. sseungi@gmail.com
  • 2Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, Korea.
  • 3Department of Internal Medicine, Chonnam National University Medical School, Hwasun, Korea.
  • 4Department of Laboratory Medicine, Chonnam National University Medical School, Hwasun, Korea.

Abstract

Previously, Pseudomonas putida was considered a low-virulence pathogen and was recognized as a rare cause of bacteremia. Recently, however, multidrug-resistant and carbapenem-resistant P. putida isolates have emerged, causing difficult-to-treat nosocomial infections in seriously ill patients. Currently, the outcome of multidrug-resistant or carbapenem-resistant P. putida bacteremia remains uncertain. Here, we report 18 cases of P. putida bacteremia with high rates of carbapenem resistance and mortality. From January 2005 through December 2011, all cases of nosocomial P. putida bacteremia were identified and analyzed at Chonnam National University Hospital and Chonnam National University Hwasun Hospital. Electronic medical records were reviewed retrospectively. Four (22%) and five (23%) of 18 P. putida isolates were resistant to imipenem and meropenem, respectively. Common primary infection sites were central venous catheter (7, 39%), pneumonia (5, 28%), and cholangitis (2, 11%). Fourteen (78%) patients had indwelling devices related to the primary site of infection. The 30-day mortality rate was 39% (7/18): 40% (2/5) in patients with carbapenem-resistant P. putida bacteremia vs. 38% (5/13) in patients with carbapenem-susceptible P. putida bacteremia. Nosocomial P. putida bacteremia showed high resistance rates to most potent beta-lactams and carbapenems and was associated with high mortality rates.

Keyword

Pseudomonas putid; Carbapenems; Drug resistance

MeSH Terms

Bacteremia
beta-Lactams
Carbapenems
Central Venous Catheters
Cholangitis
Cross Infection
Drug Resistance
Electronic Health Records
Humans
Imipenem
Pneumonia
Pseudomonas
Pseudomonas putida
Retrospective Studies
Thienamycins
Carbapenems
Imipenem
Thienamycins
beta-Lactams

Reference

1. Von Graevenitz A, Weinstein J. Pathogenic significance of Pseudomonas fluorescens and Pseudomonas putida. Yale J Biol Med. 1971. 44:265–273.
2. Yoshino Y, Kitazawa T, Kamimura M, Tatsuno K, Ota Y, Yotsuyanagi H. Pseudomonas putida bacteremia in adult patients: five case reports and a review of the literature. J Infect Chemother. 2011. 17:278–282.
Article
3. Martino R, Martínez C, Pericas R, Salazar R, Solá C, Brunet S, et al. Bacteremia due to glucose non-fermenting gram-negative bacilli in patients with hematological neoplasias and solid tumors. Eur J Clin Microbiol Infect Dis. 1996. 15:610–615.
Article
4. Souza Dias MB, Habert AB, Borrasca V, Stempliuk V, Ciolli A, Araújo MR, et al. Salvage of long-term central venous catheters during an outbreak of Pseudomonas putida and Stenotrophomonas maltophilia infections associated with contaminated heparin catheter-lock solution. Infect Control Hosp Epidemiol. 2008. 29:125–130.
5. Perz JF, Craig AS, Stratton CW, Bodner SJ, Phillips WE Jr, Schaffner W. Pseudomonas putida septicemia in a special care nursery due to contaminated flush solutions prepared in a hospital pharmacy. J Clin Microbiol. 2005. 43:5316–5318.
Article
6. Torii K, Noda Y, Miyazaki Y, Ohta M. An unusual outbreak of infusion-related bacteremia in a gastrointestinal disease ward. Jpn J Infect Dis. 2003. 56:177–178.
7. Oğuz SS, Unlü S, Saygan S, Dilli D, Erdoğan B, Dilmen U. Rapid control of an outbreak of Pseudomonas putida in a tertiary neonatal intensive care unit. J Hosp Infect. 2010. 76:361–362.
Article
8. Carpenter RJ, Hartzell JD, Forsberg JA, Babel BS, Ganesan A. Pseudomonas putida war wound infection in a US Marine: a case report and review of the literature. J Infect. 2008. 56:234–240.
Article
9. Korcova J, Koprnova J, Krcmery V. Bacteraemia due to Pseudomonas putida and other Pseudomonas non-aeruginosa in children. J Infect. 2005. 51:81.
Article
10. Blazevic DJ, Koepcke MH, Matsen JM. Incidence and identification of Pseudomonas fluorescens and Pseudomonas putida in the clinical laboratory. Appl Microbiol. 1973. 25:107–110.
Article
11. Almuzara M, Radice M, de Gárate N, Kossman A, Cuirolo A, Santella G, et al. VIM-2-producing Pseudomonas putida, Buenos Aires. Emerg Infect Dis. 2007. 13:668–669.
12. Treviño M, Moldes L, Hernández M, Martínez-Lamas L, García-Riestra C, Regueiro BJ. Nosocomial infection by VIM-2 metallo-beta-lactamase-producing Pseudomonas putida. J Med Microbiol. 2010. 59:853–855.
Article
13. Kumita W, Saito R, Sato K, Ode T, Moriya K, Koike K, et al. Molecular characterizations of carbapenem and ciprofloxacin resistance in clinical isolates of Pseudomonas putida. J Infect Chemother. 2009. 15:6–12.
Article
14. Poirel L, Yakupoğullari Y, Kizirgil A, Dogukan M, Nordmann P. VIM-5 metallo-beta-lactamase-producing Pseudomonas putida from Turkey. Int J Antimicrob Agents. 2009. 33:287.
15. Bennett JW, Herrera ML, Lewis JS 2nd, Wickes BW, Jorgensen JH. KPC-2-producing Enterobacter cloacae and pseudomonas putida coinfection in a liver transplant recipient. Antimicrob Agents Chemother. 2009. 53:292–294.
Article
16. Falagas ME, Karageorgopoulos DE. Pandrug resistance (PDR), extensive drug resistance (XDR), and multidrug resistance (MDR) among Gram-negative bacilli: need for international harmonization in terminology. Clin Infect Dis. 2008. 46:1121–1122.
Article
17. Anaissie E, Fainstein V, Miller P, Kassamali H, Pitlik S, Bodey GP, et al. Pseudomonas putida. Newly recognized pathogen in patients with cancer. Am J Med. 1987. 82:1191–1194.
18. Yang CH, Young T, Peng MY, Weng MC. Clinical spectrum of Pseudomonas putida infection. J Formos Med Assoc. 1996. 95:754–761.
19. Fass RJ, Barnishan J, Solomon MC, Ayers LW. In vitro activities of quinolones, beta-lactams, tobramycin, and trimethoprim-sulfamethoxazole against nonfermentative gram-negative bacilli. Antimicrob Agents Chemother. 1996. 40:1412–1418.
Article
20. Bogaerts P, Huang TD, Rodriguez-Villalobos H, Bauraing C, Deplano A, Struelens MJ, et al. Nosocomial infections caused by multidrug-resistant Pseudomonas putida isolates producing VIM-2 and VIM-4 metallo-beta-lactamases. J Antimicrob Chemother. 2008. 61:749–751.
Article
21. Lee K, Park AJ, Kim MY, Lee HJ, Cho JH, Kang JO, et al. Metallo-beta-lactamase-producing Pseudomonas spp. in Korea: high prevalence of isolates with VIM-2 type and emergence of isolates with IMP-1 type. Yonsei Med J. 2009. 50:335–339.
Article
22. Jacquier H, Carbonnelle E, Corvec S, Illiaquer M, Le Monnier A, Bille E, et al. Revisited distribution of nonfermenting Gram-negative bacilli clinical isolates. Eur J Clin Microbiol Infect Dis. 2011. 30:1579–1586.
Article
Full Text Links
  • CMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr