1. Munoz-Price LS, Weinstein RA. Acinetobacter infection. N Engl J Med. 2008. 358:1271–1281.
2. Kapoor R. Acinetobacter infection. N Engl J Med. 2008. 358:2845–2846.
3. Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA. Global challenge of multidrug-resistant
Acinetobacter baumannii. Antimicrob Agents Chemother. 2007. 51:3471–3484.
Article
4. Nemec A, Krizova L, Maixnerova M, van der Reijden TJ, Deschaght P, Passet V, et al. Genotypic and phenotypic characterization of the
Acinetobacter calcoaceticus-
Acinetobacter baumannii complex with the proposal of
Acinetobacter pittii sp. nov. (formerly
Acinetobacter genomic species 3) and
Acinetobacter nosocomialis sp. nov. (formerly
Acinetobacter genomic species 13TU). Res Microbiol. 2011. 162:393–404.
Article
5. Park YK, Jung SI, Park KH, Kim DH, Choi JY, Kim SH, et al. Changes in antimicrobial susceptibility and major clones of
Acinetobacter calcoaceticus-baumannii complex isolates from a single hospital in Korea over 7 years. J Med Microbiol. 2012. 61:71–79.
Article
6. Talbot GH, Bradley J, Edwards JE Jr, Gilbert D, Scheld M, Bartlett JG. Bad bugs need drugs: an update on the development pipeline from the antimicrobial availability task force of the Infectious Diseases Society of America. Clin Infect Dis. 2006. 42:657–668.
Article
7. Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant
Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009. 22:582–610.
Article
8. Gaynes R, Edwards JR. Overview of nosocomial infections caused by gram-negative bacilli. Clin Infect Dis. 2005. 41:848–854.
Article
9. Lockhart SR, Abramson MA, Beekmann SE, Gallagher G, Riedel S, Diekema DJ, et al. Antimicrobial resistance among Gram-negative bacilli as causing infections in intensive care unit patients in the United States between 1993 and 2004. J Clin Microbiol. 2007. 45:3352–3359.
Article
10. Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multidrug-resistant
Acinetobacter baumannii. Nat Rev Microbiol. 2007. 5:939–951.
Article
11. Bonomo RA, Szabo D. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin Infect Dis. 2006. 43:S49–S56.
12. Jain R, Danziger LH. Multidrug-resistant
Acinetobacter infections: an emerging challenge to clinicians. Ann Pharmacother. 2004. 38:1449–1459.
Article
13. Gilad J, Carmeli Y. Treatment options for multidrug-resistant
Acinetobacter species. Drugs. 2008. 68:165–189.
Article
14. Giske CG, Monnet DL, Cars O, Carmeli Y. Clinical and economic impact of common multidrug-resistant gram-negative bacilli. Antimicrob Agents Chemother. 2008. 52:813–821.
Article
15. Falagas ME, Kasiakou SK. Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis. 2005. 40:1333–1341.
Article
16. Li J, Nation RL, Turnidge JD, Milne RW, Coulthard K, Rayner CR, et al. Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect Dis. 2006. 6:589–601.
Article
17. Gales AC, Jones RN, Sader HS. Global assessment of the antimicrobial activity of polymyxin B against 54 731 clinical isolates of Gram-negative bacilli: report from the SENTRY antimicrobial surveillance programme (2001-2004). Clin Microbiol Infect. 2006. 12:315–321.
Article
18. Hawley JS, Murray CK, Jorgensen JH. Colistin heteroresistance in
Acinetobacter and its association with previous colistin therapy. Antimicrob Agents Chemother. 2008. 52:351–352.
Article
19. Li J, Rayner CR, Nation RL, Owen RJ, Spelman D, Tan KE, et al. Heteroresistance to colistin in multidrug-resistant
Acinetobacter baumannii. Antimicrob Agents Chemother. 2006. 50:2946–2950.
Article
20. Ko KS, Suh JY, Kwon KT, Jung SI, Park KH, Kang CI, et al. High rates of resistance to colistin and polymyxin B in subgroups of
Acinetobacter baumannii isolates from Korea. J Antimicrob Chemother. 2007. 60:1163–1167.
Article
21. Park YK, Peck KR, Cheong HS, Chung DR, Song JH, Ko KS. Extreme drug resistance in
Acinetobacter baumannii infections in intensive care units, South Korea. Emerg Infect Dis. 2009. 15:1325–1327.
Article
22. Doi Y, Husain S, Potoski BA, McCurry KR, Paterson DL. Extensively drug-resistant Acinetobacter baumannii. Emerg Infect Dis. 2009. 15:980–982.
23. Obritsch MD, Fish DN, MacLaren R, Jung R. National surveillance of antimicrobial resistance in
Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Antimicrob Agents Chemother. 2004. 48:4606–4610.
Article
24. Lee K, Kim MN, Kim JS, Hong HL, Kang JO, Shin JH, et al. Further increases in carbapenem-, amikacin-, and fluoroquinolone-resistant isolates of
Acinetobacter spp. and
P. aeruginosa in Korea: KONSAR Study 2009. Yonsei Med J. 2011. 52:793–802.
Article
25. Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future. Antimicrob Agents Chemother. 2011. 55:4943–4960.
Article
26. Lee H, Ko KS, Song JH, Peck KR. Antimicrobial activity of doripenem and other carbapenems against Gram-negative pathogens from Korea. Microb Drug Resist. 2011. 17:37–45.
Article
27. Baek JY, Ko KS, Kang CI, Song JH, Peck KR.
In vitro antibacterial activities of doripenem, imipenem, and meropenem against recent
Streptococcus pneumoniae isolates. Diagn Microbiol Infect Dis. 2011. 71:297–300.
Article
28. Poole K. Pseudomonas aeruginosa: resistance to max. Front Microbiol. 2011. 2:65.
29. Poirel L, Nordmann P. Carbapenem resistance in
Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect. 2006. 12:826–836.
Article
30. Nordmann P, Poirel L. Emerging carbapenemases in Gram-negative aerobes. Clin Microbiol Infect. 2002. 8:321–331.
Article
31. Héritier C, Poirel L, Lambert T, Nordmann P. Contribution of acquired carbapenem-hydrolyzing oxacillinases to carbapenem resistance in
Acinetobacter baumannii. Antimicrob Agents Chemother. 2005. 49:3198–3202.
Article
32. Gupta V. Metallo beta-lactamases in
Pseudomonas aeruginosa and
Acinetobacter species. Expert Opin Investig Drugs. 2008. 17:131–143.
Article
33. Castanheira M, Toleman MA, Jones RN, Schmidt FJ, Walsh TR. Molecular characterization of a beta-lactamase gene,
blaGIM-1, encoding a new subclass of metallo-beta-lactamase. Antimicrob Agents Chemother. 2004. 48:4654–4661.
Article
34. Picão RC, Poirel L, Gales AC, Nordmann P. Diversity of beta-lactamases produced by ceftazidime-resistant
Pseudomonas aeruginosa isolates causing bloodstream infections in Brazil. Antimicrob Agents Chemother. 2009. 53:3908–3913.
Article
35. Wang J, Zhou JY, Qu TT, Shen P, Wei ZQ, Yu YS, et al. Molecular epidemiology and mechanisms of carbapenem resistance in
Pseudomonas aeruginosa isolates from Chinese hospitals. Int J Antimicrob Agents. 2010. 35:486–491.
Article
36. Nation RL, Li J. Colistin in the 21st century. Curr Opin Infect Dis. 2009. 22:535–543.
Article
37. Antoniadou A, Kontopidou F, Poulakou G, Koratzanis E, Galani I, Papadomichelakis E, et al. Colistin-resistant isolates of
Klebsiella pneumoniae emerging in intensive care unit patients: first report of a multiclonal cluster. J Antimicrob Chemother. 2007. 59:786–790.
Article
38. Lee JY, Song JH, Ko KS. Identification of nonclonal
Pseudomonas aeruginosa isolates with reduced colistin susceptibility in Korea. Microb Drug Resist. 2011. 17:299–304.
Article
39. Gunn JS. The
Salmonella PmrAB regulon: lipopolysaccharide modifications, antimicrobial peptide resistance and more. Trends Microbiol. 2008. 16:284–290.
Article
40. Moskowitz SM, Ernst RK, Miller SI. PmrAB, a two-component regulatory system of
Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A. J Bacteriol. 2004. 186:575–579.
Article
41. Sun S, Negrea A, Rhen M, Andersson DI. Genetic analysis of colistin resistance in
Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother. 2009. 53:2298–2305.
Article
42. Adams MD, Nickel GC, Bajaksouzian S, Lavender H, Murthy AR, Jacobs MR, et al. Resistance to colistin in
Acinetobacter baumannii associated with mutations in the PmrAB two-component system. Antimicrob Agents Chemother. 2009. 53:3628–3634.
Article
43. Moffatt JH, Harper M, Harrison P, Hale JD, Vinogradov E, Seemann T, et al. Colistin resistance in
Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother. 2010. 54:4971–4977.
Article
44. Arroyo LA, Herrera CM, Fernandez L, Hankins JV, Trent MS, Hancock RE. The
pmrCAB operon mediates polymyxin resistance in
Acinetobacter baumannii ATCC 17978 and clinical isolates through phosphoethanolamine modification of lipid A. Antimicrob Agents Chemother. 2011. 55:3743–3751.
Article
45. Abraham N, Kwon DH. A single amino acid substitution in PmrB is associated with polymyxin B resistance in clinical isolate of
Pseudomonas aeruginosa. FEMS Microbiol Lett. 2009. 298:249–254.
Article
46. Barrow K, Kwon DH. Alterations in two-component regulatory systems of
phoPQ and
pmrAB are associated with polymyxin B resistance in clinical isolates of
Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009. 53:5150–5154.
Article
47. Muller C, Plésiat P, Jeannot K. A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and β-lactams in
Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2011. 55:1211–1221.
Article
48. Park YK, Choi JY, Shin D, Ko KS. Correlation between overexpression and amino acid substitution of the PmrAB locus and colistin resistance in
Acinetobacter baumannii. Int J Antimicrob Agents. 2011. 37:525–530.
Article
49. Dijkshoorn L, Aucken H, Gerner-Smidt P, Janssen P, Kaufmann ME, Garaizar J, et al. Comparison of outbreak and nonoutbreak
Acinetobacter baumannii strains by genotypic and phenotypic methods. J Clin Microbiol. 1996. 34:1519–1525.
Article
50. Van Dessel H, Dijkshoorn L, van der Reijden T, Bakker N, Baauw A, van den Broek P, et al. Identification of a new geographically widespread multiresistant
Acinetobacter baumannii clone from European hospitals. Res Microbiol. 2004. 155:105–112.
Article
51. Higgins PG, Dammhayn C, Hackel M, Seifert H. Global spread of carbapenem-resistant Acinetobacter baumannii. J Antimicrob Chemother. 2010. 65:233–238.
52. Bartual SG, Seifert H, Hippler C, Luzon MA, Wisplinghoff H, Rodríguez-Valera F. Development of a multilocus sequence typing scheme for characterization of clinical isolates of
Acinetobacter baumannii. J Clin Microbiol. 2005. 43:4382–4390.
Article
53. Adams-Haduch JM, Onuoha EO, Bogdanovich T, Tian GB, Marschall J, Urban CM, et al. Molecular epidemiology of carbapenem-nonsusceptible
Acinetobacte baumanniir in the United States. J Clin Microbiol. 2011. 49:3849–3854.
Article
54. Park YK, Jung SI, Park KH, Kim DH, Choi JY, Kim SH, et al. Changes in antimicrobial susceptibility and major clones of
Acinetobacter calcoaceticus-baumannii complex isolates from a single hospital in Korea over 7 years. J Med Microbiol. 2012. 61:71–79.
Article
55. Runnegar N, Sidjabat H, Goh HM, Nimmo GR, Schembri MA, Paterson DL. Molecular epidemiology of multidrug-resistant
Acinetobacter baumannii in a single institution over a 10-year period. J Clin Microbiol. 2010. 48:4051–4056.
Article
56. Mugnier PD, Poirel L, Naas T, Nordmann P. Worldwide dissemination of the
blaOXA-23 carbapenemase gene of
Acinetobacter baumannii. Emerg Infect Dis. 2010. 16:35–40.
Article
57. Fu Y, Zhou J, Zhou H, Yang Q, Wei Z, Yu Y, et al. Wide dissemination of OXA-23-producing carbapenem-resistant
Acinetobacter baumannii clonal complex 22 in multiple cities of China. J Antimicrob Chemother. 2010. 65:644–650.
Article
58. Snitkin ES, Zelazny AM, Montero CI, Stock F, Mijares L, Murray PR, et al. Genome-wide recombination drives diversification of epidemic strains of
Acinetobacter baumannii. Proc Natl Acad Sci U S A. 2011. 108:13758–13763.
Article
59. Curran B, Jonas D, Grundmann H, Pitt T, Dowson CG. Development of a multilocus sequence typing scheme for the opportunistic pathogen
Pseudomonas aeruginosa. J Clin Microbiol. 2004. 42:5644–5649.
Article
60. O'Carroll MR, Syrmis MW, Wainwright CE, Greer RM, Mitchell P, Coulter C, et al. Clonal strains of Pseudomonas aeruginosa in paediatric and adult cystic fibrosis units. Eur Respir J. 2004. 24:101–106.
61. Maatallah M, Cheriaa J, Backhrouf A, Iversen A, Grundmann H, Do T, et al. Population structure of Pseudomonas aeruginosa from five Mediterranean countries: evidence for frequent recombination and epidemic occurrence of CC235. PLoS One. 2011. 6:e25617.
62. Wiehlmann L, Wagner G, Cramer N, Siebert B, Gudowius P, Morales G, et al. Population structure of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2007. 104:8101–8106.
63. Pirnay JP, Bilocq F, Pot B, Cornelis P, Zizi M, Van Eldere J, et al. Pseudomonas aeruginosa population structure revisited. PLoS One. 2009. 4:e7740.
64. Woodford N, Turton JF, Livermore DM. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev. 2011. 35:736–755.
Article
65. Edelstein M. Epidemic clones and dissemination of carbapenem resistance. 2011. ICAAC;173.
66. Samuelsen O, Toleman MA, Sundsfjord A, Rydberg J, Leegaard TM, Walder M, et al. Molecular epidemiology of metallo-beta-lactamase-producing
Pseudomonas aeruginosa isolates from Norway and Sweden shows import of international clones and local clonal expansion. Antimicrob Agents Chemother. 2010. 54:346–352.
Article
67. Seok Y, Bae IK, Jeong SH, Kim SH, Lee H, Lee K. Dissemination of IMP-6 metallo-β-lactamase-producing
Pseudomonas aeruginosa sequence type 235 in Korea. J Antimicrob Chemother. 2011. 66:2791–2796.
Article
68. Lee JY, Lim MH, Heo ST, Ko KS. Repeated isolation of Pseudomonas aeruginosa isolates resistant to both polymyxins and carbapenems from one patient. Diagn Microbiol Infect Dis. 2000. (In press).
69. Cheng K, Smyth RL, Govan JR, Doherty C, Winstanley C, Denning N, et al. Spread of beta-lactam-resistant
Pseudomonas aeruginosa in a cystic fibrosis clinic. Lancet. 1996. 348:639–642.
Article