1. Morino K, Katsumi H, Akahori Y, Iba Y, Shinohara M, Ukai Y, Kohara Y, Kurosawa Y. Antibody fusions with fluorescent proteins: a versatile reagent for profiling protein expression. J Immunol Methods. 2001. 257:175–184.
Article
2. Pack P, Plückthun A. Miniantibodies use of amphipathic helices to produce functional, flexibly linked dimeric Fv fragments with high avidity in
Escherichia coli. Biochemistry. 1992. 31:1579–1584.
Article
3. Horne C, Klein M, Polidoulis I, Dorrington KJ. Noncovalent association of heavy and light chains of human immunoglobulins. III. Specific interactions between VH and VL. J Immunol. 1982. 129:660–664.
4. Jäger M, Plückthun A. Domain interactions in antibody Fv and scFv fragments: effects on unfolding kinetics and equilibria. FEBS Lett. 1999. 462:307–312.
Article
5. Jäger M, Plückthun A. Folding and assembly of an antibody Fv fragment, a heterodimer stabilized by antigen. J Mol Biol. 1999. 285:2005–2019.
Article
6. Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotný J, Margolies MN, Ridge RJ, Bruccoleri RE, Haber E, Crea R, et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in
Escherichia coli. Proc Natl Acad Sci U S A. 1988. 85:5879–5883.
Article
7. Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, Lee T, Pope SH, Riordan GS, Whitlow M. Single-chain antigen-binding proteins. Science. 1988. 242:423–426.
Article
8. Chaudhary VK, Queen C, Junghans RP, Waldmann TA, FitzGerald DJ, Pastan I. A recombinant immunotoxin consisting of two antibody variable domains fused to Pseudomonas exotoxin. Nature. 1989. 339:394–397.
Article
9. Glockshuber R, Malia M, Pfitzinger I, Pluckthun A. A comparison of strategies to stabilize immunoglobulin Fv-fragments. Biochemistry. 1990. 29:1362–1367.
Article
10. Bird RE, Walker BW. Single chain antibody variable regions. Trends Biotechnol. 1991. 9:132–137.
Article
11. Reiter Y, Brinkmann U, Jung SH, Lee B, Kasprzyk PG, King CR, Pastan I. Improved binding and antitumor activity of a recombinant anti-erbB2 immunotoxin by disulfide stabilization of the Fv fragment. J Biol Chem. 1994. 269:18327–18331.
Article
12. Jung SH, Pastan I, Lee B. Design of interchain disulfide bonds in the framework region of the Fv fragment of the monoclonal antibody B3. Proteins. 1994. 19:35–47.
Article
13. Reiter Y, Brinkmann U, Lee B, Pastan I. Engineering antibody Fv fragments for cancer detection and therapy: disulfide-stabilized Fv fragments. Nat Biotechnol. 1996. 14:1239–1245.
Article
14. Reiter Y, Brinkmann U, Kreitman RJ, Jung SH, Lee B, Pastan I. Stabilization of the Fv fragments in recombinant immunotoxins by disulfide bonds engineered into conserved framework regions. Biochemistry. 1994. 33:5451–5459.
Article
15. Reiter Y, Brinkmann U, Webber KO, Jung SH, Lee B, Pastan I. Engineering interchain disulfide bonds into conserved framework regions of Fv fragments improved biochemical characteristics of recombinant immunotoxins containing disulfide-stabilized Fv. Protein Eng. 1994. 7:697–704.
Article
16. Skerra A, Plückthun A. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science. 1988. 240:1038–1041.
Article
17. Krebber A, Burmester J, Plückthun A. Inclusion of an up-stream transcriptional terminator in phage display vectors abolishes background expression of toxic fusions with coat protein g3p. Gene. 1996. 178:71–74.
Article
18. Clark MA, Hammond FR, Papaioannou A, Hawkins NJ, Ward RL. Regulation and expression of human Fabs under the control of the
Escherichia coli arabinose promoter, PBAD. Immunotechnol. 1997. 3:217–226.
Article
19. Knappik A, Plückthun A. Engineered turns of a recombinant antibody improve its in vivo folding. Protein Eng. 1995. 8:81–89.
20. Deramn AI, Prinz WA, Belin D, Beckwith J. Mutations that allow disulfide bond formation in the cytoplasm of
Escherichia coli. Science. 1993. 262:1744–1747.
Article
21. He M, Hamon M, Liu H, Kang A, Taussig MJ. Functional expression of a single-chain anti-progesterone antibody fragment in the cytoplasm of a mutant
Escherichia coli. Nucleic Acids Res. 1995. 23:4009–4010.
Article
22. Jurado P, Ritz D, Beckwith J, deLorenzo V, Fernandez LA. Production of functional single-chain Fv antibodies in the cytoplasm of
Escherichia coli. J Mol Biol. 2002. 320:1–10.
Article
23. Levy R, Weiss R, Chen G, Iverson BL, Georgiou G. Production of correctly folded Fab antibody fragment in the cytoplasm of
Escherichia coli trxB gor mutants via the coexpression of molecular chaperones. Protein Expr Purif. 2001. 23:338–347.
Article
24. Venturi M, Seifert C, Hunte C. High level production of functional antibody Fab fragments in an oxidizing bacterial cytoplasm. J Mol Biol. 2002. 315:1–8.
Article
25. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning. 1989. 2nd ed. NY, USA: Cold Spring Harbor Laboratory Press Cold Spring Harbor.
26. Cha S, Leung PS, Coppel RL, VandeWater J, Ansari AA, Gershwin ME. Heterogeneity of combinatorial human auto-antibodies against PDC-E2 and biliary epithelial cells in patients with primary biliary cirrhosis. Hepatology. 1994. 20:574–583.
Article
27. McCafferty J, Johnson KS. McCafferty J, Johnson KS, editors. Construction and screening of antibody display libraries. Phage Display of Peptides and Proteins. A Laboratory Manual. 1996. San Diego, CA, USA: Academic Press Inc.
Article
28. Brunelle A, Schleif R. Determining residue-base interactions between AraC protein and araI DNA. J Mol Biol. 1989. 209:607–622.
Article
29. Menon KP, Lee NL. Activation of ara operons by a truncated AraC protein does not require inducer. Proc Natl Acad Sci U S A. 1990. 87:3708–3712.
Article
30. Cha S, Leung PS, Gershwin ME, Fletcher MP, Ansari AA, Coppel RL. Combinatorial autoantibodies to dihydrolipoamide acetyltransferase, the major autoantigen of primary biliary cirrhosis. Proc Natl Acad Sci U S A. 1993. 90:2527–2531.
Article
31. O'shea EK, Rutkowski R, Stafford WE 3rd, Kim PS. Preferential heterodimer formation by isolated leucine zipper from fos and jun. Science. 1989. 245:646–648.
32. Griep RA, vanTwisk C, Kerschbaumer RJ, Harper K, Torrance L, Himmler G, vanderWolf JM, Schots A. pSKAP/S: an expression vector for the production of single-chain Fv alkaline phosphatase fusion proteins. Protein Expr Purif. 1999. 16:63–69.
Article
33. Hayhurst A. Improved expression characteristics of single-chain Fv fragments when fused downstream of the
Escherichia coli maltose-binding protein or upstream of a single immunoglobulin-constant domain. Protein Expr Purif. 2000. 18:1–10.
Article
34. Bustos SA, Schleif RF. Functional domains of the AraC protein. Proc Natl Acad Sci U S A. 1993. 90:5638–5642.
Article
35. Strachan G, Williams S, Moyle SP, Harris WJ, Porter AJ. Reduced toxicity of expression, in
Escherichia coli, of anti pollutant antibody fragments and their use as sensitive diagnostic molecules. J Appl Microbiol. 1999. 87:410–417.
Article
36. Bessette PH, Aslund F, Beckwith J, Georgiou G. Efficient folding of proteins with multiple disulfide bonds in the
Escherichia coli cytoplasm. Proc Natl Acad Sci U S A. 1999. 96:13703–13708.
Article