J Korean Soc Radiol.  2011 May;64(5):429-434. 10.3348/jksr.2011.64.5.429.

Angiomatous Meningioma: CT and MR Imaging Features

Affiliations
  • 1Department of Radiology, Eulji University Hospital, Daejeon, Korea. midosyu@eulji.ac.kr
  • 2Department of Neurosurgery, Eulji University Hospital, Daejeon, Korea.

Abstract

PURPOSE
To describe the computed tomography and magnetic resonance imaging features of angiomatous meningiomas.
MATERIALS AND METHODS
We reviewed the imaging findings of six patients with pathologically proven angiomatous meningiomas and characterized the location, margin, dura base, CT attenuation, MR signal intensity, intratumoral signal void, contrast enhancement, intratumoral cystic change, and peritumoral edema.
RESULTS
Most tumors showed high signal intensity on T2-weighted images, and low signal intensity on diffusion-weighted images. After intravenous contrast administration, the tumor showed heterogeneous strong enhancement. Most tumors had a lobulated margin with prominent intratumoral signal voids. Four patients showed marked or small intratumoral cystic changes.
CONCLUSION
Typically, angiomatous meningiomas were dura-based masses characterized by lobulated margins with high signal intensity on T2-weighted imaging (T2WI), low signal intensity on diffusion-weighted imaging (DWI), prominent intratumoral signal voids, intratumoral cystic changes, and marked enhancement after intravenous contrast administration.


MeSH Terms

Humans
Magnetic Resonance Imaging
Meningioma
Tomography, X-Ray Computed

Figure

  • Fig. 1 A, B. Precontrast (A) and contrast-enhanced (B) CT images reveal irregular, lobulated margins in the low-attenuated mass (arrows) with heterogeneous enhancement and intratumoral irregular cystic changes (arrows). C, D. Axial MR images reveal the relatively narrow dura-based, lobulated mass (arrows), showing heterogeneous high signal intensity on T2WI (C) and heterogeneous enhancement on post-contrast T1WI (D). E. Photograph of the excision biopsy specimen showing a highly vascular tumor predominantly consisting of dilated vascular spaces with intervening areas with spindle and oval cells as well as abundant cytoplasm and oval vesicular nuclei (H & E, × 400).

  • Fig. 2 A, B. Precontrast (A) and post-contrast (B) CT images reveal the lobulated low-attenuated mass (arrows) with marked enhancement and multiple cystic changes (arrowheads). C-E. MR images reveal the lobulated mass (arrows) with multiple cystic changes (arrowheads) showing high signal intensity on T2WI (C), slightly low signal intensity on DWI (D), and marked enhancement with prominent intratumoral vascularities on post-contrast T1WI (E). F. Perfusion MRI shows markedly increased rCBV in the tumor (arrows).


Reference

1. Kim SH, Kim DG, Kim CY, Choe G, Chang KH, Jung HW. Microcystic meningioma: the characteristic neuroradiologic findings. J Korean Neurosurg Soc. 2003; 34:401–406.
2. Hasselblatt M, Nolte KW, Paulus W. Angiomatous meningioma: a clinicopathology study of 38 cases. Am J Surg Pathol. 2004; 28:390–393.
3. Swami R, Ghosh A, Verma-Pradhan S. Angiomatous meningioma. Nepal J Neurosci. 2007; 4:102.
4. Hakyemez B, Yildirim N, Gokalp G, Erdogan C, Parlak M. The contribution of diffusion-weighted MR imaging to distinguishing typical from atypical meningiomas. Neuroradiology. 2006; 48:513–520.
5. Elster AD, Challa VR, Gilbert TH, Richardson DN, Contento JC. Meningiomas: MR and histopathologic features. Radiology. 1989; 170:857–862.
6. Kaplan RD, Coons S, Drayer BP, Bird CR, Johnson PC. MR characteristics of meningioma subtypes at 1.5 tesla. J Comput Assist Tomogr. 1992; 16:366–371.
7. Taraszewska A, Bogucki J. A case of cystic form of angiomatous meningioma with prominent microvascular pattern mimicking haemangioblastoma. Folia Neuropathol. 2001; 39:119–123.
8. Cushing H, Eisenhardt L. Meningiomas. Am J Med Sci. 1938; 196:741–742.
9. Rao S, Rajkumar A, Kuruvilla S. Angiomatous meningioma: a diagnostic dilemma. Indian J Pathol Microbiol. 2008; 51:53–55.
10. Alen JF, Lobato RD, Gomez PA, Boto GR, Lagares A, Ramos A, et al. Intracranial hemangiopericytoma: study of 12 cases. Acta Neurochir. 2001; 143:575–586.
11. Chen TY, Lai PH, Ho JT, Wang JS, Chen WL, Pan HB, et al. Magnetic resonance imaging and diffusion-weighted images of cystic meningioma: correlating with histopathology. Clin Imaging. 2004; 28:10–19.
12. Bydder GM, Kingsley DP, Brown J, Niendorf HP, Young IR. MR imaging of meningiomas including studies with and without gadolinium-DTPA. J Comput Assist Tomogr. 1985; 9:690–697.
13. Schorner W, Schubeus P, Henkes H, Rottacker C, Hamm B, Felix R. Intracranial meningiomas. Comparison of plain and contrastenhanced examinations in CT and MRI. Neuroradiology. 1990; 32:12–18.
14. Schubeus P, Schorner W, Rottacker C, Sander B. Intracranial meningiomas: how frequent are indicative findings in CT and MRI? Neuroradiology. 1990; 32:467–473.
15. Buetow MP, Buetow PC, Smirniotopoulos JG. Typical, atypical, and misleading features in meningioma. Radiographics. 1991; 11:1087–1106.
16. Sridhar K, Ravi R, Ramamurthi B, Vasudevan MC. Cystic meningiomas. Surg Neurol. 1995; 43:235–239.
17. Zee CS, Chen T, Hinton DR, Tan M, Segall HD, Apuzzo ML. Magnetic resonance imaging of cystic meningiomas and its surgical implications. Neurosurgery. 1995; 36:482–488.
18. Rengachary S, Batnitzky S, Kepes JJ, Morantz RA, O'Boynick P, Watanabe I. Cystic lesions associated with intracranial meningiomas. Neurosurgery. 1979; 4:107–114.
19. Worthington C, Caron JL, Melanson D, Leblanc R. Meningioma cysts. Neurology. 1985; 35:1720–1724.
20. Dell S, Ganti SR, Steinberger A, McMurtry J 3rd. Cystic meningiomas: a clinicoradiological study. J Neurosurg. 1982; 57:8–13.
21. Fortuna A, Ferrante L, Acqui M, Guglielmi G, Mastronardi L. Cystic meningiomas. Acta Neurochir. 1988; 90:23–30.
22. Parisi G, Tropea R, Giuffrida S, Lombardo M, Giuffre F. Cystic meningiomas. Report of seven cases. J Neurosurg. 1986; 64:35–38.
23. Filippi CG, Edgar MA, Ulug AM, Prowda JC, Heier LA, Zimmerman RD. Appearance of meningiomas on diffusionweighted images: correlating diffusion constants with histopathologic findings. AJNR Am J Neuroradiol. 2001; 22:65–72.
24. Kono K, Inoue Y, Nakayama K, Shakudo M, Morino M, Ohata K, et al. The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol. 2001; 22:1081–1088.
25. Whittle IR, Smith C, Navoo P, Collie D. Meningiomas. Lancet. 2004; 363:1535–1543.
26. Pistolesi S, Fontanini G, Camacci T, De Ieso K, Boldrini L, Lupi G, et al. Meningioma-associated brain oedema: the role of angiogenic factors and pial blood supply. J Neurooncol. 2002; 60:159–164.
27. Domingo Z, Rowe G, Blamire AM, Cadoux-Hudson TA. Role of ischaemia in the genesis of oedema surrounding meningiomas assessed using magnetic resonance imaging and spectroscopy. Br J Neurosurg. 1998; 12:414–418.
28. Yoshioka H, Hama S, Taniguchi E, Sugiyama K, Arita K, Kurisu K. Peritumoral brain edema associated with meningioma: influence of vascular endothelial growth factor expression and vascular blood supply. Cancer. 1999; 85:936–944.
29. Zhang H, Rodiger LA, Shen T, Miao J, Oudkerk M. Preoperative subtyping of meningiomas by perfusion MR imaging. Neuroradiology. 2008; 50:835–840.
30. Kimura H, Takeuchi H, Koshimoto Y, Arishima H, Uematsu H, Kawamura Y, et al. Perfusion imaging of meningioma by using continuous arterial spin-labeling: comparison with dynamic susceptibility-weighted contrast-enhanced MR images and histopathologic features. AJNR Am J Neuroradiol. 2006; 27:85–93.
31. Lupo JM, Cha S, Chang SM, Nelson SJ. Dynamic susceptibilityweighted perfusion imaging of high-grade gliomas: Characterization of spatial heterogeneity. AJNR Am J Neuroradiol. 2005; 26:1446–1454.
Full Text Links
  • JKSR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr