1.Soto SM. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence. 2013. 4:223–9.
Article
2.Sarathy J., Dartois V., Dick T., Gengenbacher M. Reduced drug uptake in phenotypically resistant nutrient-starved nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2013. 57:1648–53.
3.da Silva PE., Von Groll A., Martin A., Palomino JC. Efflux as a mechanism for drug resistance in Mycobacterium tuberculosis. FEMS Immunol Med Microbiol. 2011. 63:1–9.
4.Balganesh M., Dinesh N., Sharma S., Kuruppath S., Nair AV., Sharma U. Efflux pumps of Mycobacterium tuberculosis play a significant role in antituberculosis activity of potential drug candidates. Antimicrob Agents Chemother. 2012. 56:2643–51.
5.Escribano I., Rodríguez JC., Llorca B., García-Pachon E., Ruiz M., Royo G. Importance of the efflux pump systems in the resistance of Mycobacterium tuberculosis to fluoroquinolones and linezolid. Chemotherapy. 2007. 53:397–401.
6.Schmalstieg AM., Srivastava S., Belkaya S., Deshpande D., Meek C., Leff R, et al. The antibiotic resistance arrow of time: efflux pump induction is a general first step in the evolution of mycobacterial drug resistance. Antimicrob Agents Chemother. 2012. 56:4806–15.
Article
7.Kim HJ. Current Status of Tuberculosis in Korea. Korean J Med. 2012. 82:257–62.
Article
8.Rodrigues L., Machado D., Couto I., Amaral L., Viveiros M. Contribution of efflux activity to isoniazid resistance in the Mycobacterium tuberculosis complex. Infect Genet Evol. 2012. 12:695–700.
9.Cho SY., Kim MJ., Suh JT., Lee HJ. Comparison of diagnostic performance of three real-time PCR kits for detecting Mycobacterium species. Yonsei Med J. 2011. 52:301–6.