Korean J Physiol Pharmacol.  2005 Oct;9(5):291-298.

Changes of Cytosolic Ca2+ under Metabolic Inhibition in Isolated Rat Ventricular Myocytes

Affiliations
  • 1Mitochondrial Signaling Laboratory, Department of Physiology and Biophysics, College of Medicine, Cardiovascular & Metabolic Disease Center, Biohealth Products Research Center, Inje University, Busan 614-735, Korea. phyhanj@ijnc.inje. ac.kr

Abstract

To characterize cytosolic Ca2+ fluctuations under metabolic inhibition, rat ventricular myocytes were exposed to 200microM 2, 4-dinitrophenol (DNP), and mitochondrial Ca2+, mitochondrial membrane potential (delta psi m), and cytosolic Ca2+ were measured, using Rhod-2 AM, TMRE, and Fluo-4 AM fluorescent dyes, respectively, by Laser Scanning Confocal Microscopy (LSCM). Furthermore, the role of sarcolemmal Na+/Ca2+ exchange (NCX) in cytosolic Ca2+ efflux was studied in KB-R7943 and Na+-free normal Tyrode's solution (143 mM LiCl ). When DNP was applied to cells loaded with Fluo-4 AM, Fluo-4 AM fluorescence intensity initially increased by 70+/-10% within 70+/-10 s, and later by 400+/-200% at 850+/-46 s. Fluorescence intensity of both Rhod-2 AM and TMRE were initially decreased by DNP, coincident with the initial increase of Fluo-4 AM fluorescence intensity. When sarcoplasmic reticulum (SR) Ca2+ was depleted by 1microM thapsigargin plus 10microM ryanodine, the initial increase of Fluo-4 AM fluorescence intensity was unaffected, however, the subsequent progressive increase was abolished. KB-R7943 delayed both the first and the second phases of cytosolic Ca2+ overload, while Na+-free solution accelerated the second. The above results suggest that: 1) the initial rise in cytosolic Ca2+ under DNP results from mitochondrial depolarization; 2) the secondary increase is caused by progressive Ca2+ release from SR; 3) NCX plays an important role in transient cytosolic Ca2+ shifts under metabolic inhibition with DNP.

Keyword

Dinitrophenol; Caffeine; Cytosolic Ca2+; Laser Scanning Confocal Microscopy; Fluo-4 AM; Mitochondria; Ventricular myocytes; NCX; KB-R7943; Rhod-2 AM; TMRE

MeSH Terms

Animals
Caffeine
Cytosol*
Fluorescence
Fluorescent Dyes
Membrane Potential, Mitochondrial
Microscopy, Confocal
Mitochondria
Muscle Cells*
Rats*
Ryanodine
Sarcoplasmic Reticulum
Thapsigargin
Caffeine
Fluorescent Dyes
Ryanodine
Thapsigargin
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr