1. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. 2017; Global patterns and trends in colorectal cancer incidence and mortality. Gut. 66:683–691. DOI:
10.1136/gutjnl-2015-310912. PMID:
26818619.
Article
2. Shin DW, Chang D, Jung JH, Han K, Kim SY, Choi KS, Lee WC, Park JH, Park JH. 2020; Disparities in the participation rate of colorectal cancer screening by fecal occult blood test among people with disabilities: a national database study in South Korea. Cancer Res Treat. 52:60–73. DOI:
10.4143/crt.2018.660. PMID:
31096735. PMCID:
PMC6962481.
Article
3. Yang SY, Cho MS, Kim NK. 2018; Difference between right-sided and left-sided colorectal cancers: from embryology to molecular subtype. Expert Rev Anticancer Ther. 18:351–358. DOI:
10.1080/14737140.2018.1442217. PMID:
29458272.
Article
5. Kciuk M, Gielecińska A, Mujwar S, Kołat D, Kałuzińska-Kołat Ż, Celik I, Kontek R. 2023; Doxorubicin-An agent with multiple mechanisms of anticancer activity. Cells. 12:659. DOI:
10.3390/cells12040659. PMID:
36831326. PMCID:
PMC9954613.
Article
6. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. 2004; Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 56:185–229. DOI:
10.1124/pr.56.2.6. PMID:
15169927.
Article
7. Bolden JE, Peart MJ, Johnstone RW. 2006; Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 5:769–784. DOI:
10.1038/nrd2133. PMID:
16955068.
Article
11. Oki Y, Copeland A, Younes A. 2011; Clinical development of panobinostat in classical Hodgkin's lymphoma. Expert Rev Hematol. 4:245–252. DOI:
10.1586/ehm.11.24. PMID:
21668391.
Article
12. Schlenk RF, Krauter J, Raffoux E, Kreuzer KA, Schaich M, Noens L, Pabst T, Vusirikala M, Bouscary D, Spencer A, Candoni A, Gil JS, Berkowitz N, Weber HJ, Ottmann O. 2018; Panobinostat monotherapy and combination therapy in patients with acute myeloid leukemia: results from two clinical trials. Haematologica. 103:e25–e28. DOI:
10.3324/haematol.2017.172411. PMID:
29051280. PMCID:
PMC5777210.
Article
13. Tan WW, Allred JB, Moreno-Aspitia A, Northfelt DW, Ingle JN, Goetz MP, Perez EA. 2016; Phase I study of panobinostat (LBH589) and letrozole in postmenopausal metastatic breast cancer patients. Clin Breast Cancer. 16:82–86. DOI:
10.1016/j.clbc.2015.11.003. PMID:
26774555. PMCID:
PMC5567753.
Article
14. Rathkopf DE, Picus J, Hussain A, Ellard S, Chi KN, Nydam T, Allen-Freda E, Mishra KK, Porro MG, Scher HI, Wilding G. 2013; A phase 2 study of intravenous panobinostat in patients with castration-resistant prostate cancer. Cancer Chemother Pharmacol. 72:537–544. DOI:
10.1007/s00280-013-2224-8. PMID:
23820963. PMCID:
PMC3970811.
Article
15. Thomas S, Aggarwal R, Jahan T, Ryan C, Troung T, Cripps AM, Raha P, Thurn KT, Chen S, Grabowsky JA, Park J, Hwang J, Daud A, Munster PN. 2016; A phase I trial of panobinostat and epirubicin in solid tumors with a dose expansion in patients with sarcoma. Ann Oncol. 27:947–952. DOI:
10.1093/annonc/mdw044. PMID:
26903311. PMCID:
PMC4843187.
Article
16. Marks PA, Jiang X. 2005; Histone deacetylase inhibitors in programmed cell death and cancer therapy. Cell Cycle. 4:549–551. DOI:
10.4161/cc.4.4.1564. PMID:
15738652.
Article
17. Marks PA, Richon VM, Kelly WK, Chiao JH, Miller T. 2004; Histone deacetylase inhibitors: development as cancer therapy. Novartis Found Symp. 259:269–281. discussion 281-288. DOI:
10.1002/0470862637.ch20. PMID:
15171260.
Article
19. Geng H, Zheng F, Sun W, Huang S, Wang Z, Yang K, Wang C, Tian C, Xu C, Zhai G, Zhao M, Hou S, Song A, Zhang Y, Zhao Q. 2024; Effect and mechanism of novel HDAC inhibitor ZDLT-1 in colorectal cancer by regulating apoptosis and inflammation. Int Immunopharmacol. 143:113333. DOI:
10.1016/j.intimp.2024.113333. PMID:
39383785.
Article
20. Wang F, Jin Y, Wang M, Luo HY, Fang WJ, Wang YN, Chen YX, Huang RJ, Guan WL, Li JB, Li YH, Wang FH, Hu XH, Zhang YQ, Qiu MZ, Liu LL, Wang ZX, Ren C, Wang DS, Zhang DS, et al. 2024; Combined anti-PD-1, HDAC inhibitor and anti-VEGF for MSS/pMMR colorectal cancer: a randomized phase 2 trial. Nat Med. 30:1035–1043. DOI:
10.1038/s41591-024-02813-1. PMID:
38438735.
Article
21. Wilson PM, Labonte MJ, Martin SC, Kuwahara ST, El-Khoueiry A, Lenz HJ, Ladner RD. 2013; Sustained inhibition of deacetylases is required for the antitumor activity of the histone deactylase inhibitors panobinostat and vorinostat in models of colorectal cancer. Invest New Drugs. 31:845–857. DOI:
10.1007/s10637-012-9914-7. PMID:
23299388.
Article
23. Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, Eng H, Nair MG, Makvandi P, Geoerger B, Kulke MH, Baird RD, Prabhu JS, Carbone D, Pecoraro C, Teh DBL, Sethi G, Cavalieri V, Lin KH, Javidi-Sharifi NR, et al. 2023; PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer. 22:138. DOI:
10.1186/s12943-023-01827-6. PMID:
37596643. PMCID:
PMC10436543.
Article
24. Yang L, Dong Z, Li S, Chen T. 2023; ESM1 promotes angiogenesis in colorectal cancer by activating PI3K/Akt/mTOR pathway, thus accelerating tumor progression. Aging (Albany NY). 15:2920–2936. DOI:
10.18632/aging.204559. PMID:
37100467. PMCID:
PMC10188330.
Article
25. Guan S, Yang R, Wu S, Xu K, Yang C. 2022; The CD133
+CXCR4
+ colorectal tumor cells promote colorectal cancer progression by PI3K/AKT signaling. J Interferon Cytokine Res. 42:195–202. DOI:
10.1089/jir.2021.0207. PMID:
35377243.
Article
26. Itoh N, Semba S, Ito M, Takeda H, Kawata S, Yamakawa M. 2002; Phosphorylation of Akt/PKB is required for suppression of cancer cell apoptosis and tumor progression in human colorectal carcinoma. Cancer. 94:3127–3134. DOI:
10.1002/cncr.10591. PMID:
12115344.
Article
27. Hu J, Li G, Liu L, Wang Y, Li X, Gong J. 2017; AF1q mediates tumor progression in colorectal cancer by regulating AKT signaling. Int J Mol Sci. 18:987. DOI:
10.3390/ijms18050987. PMID:
28475127. PMCID:
PMC5454900.
Article
28. Liang Y, Zhu D, Zhu L, Hou Y, Hou L, Huang X, Li L, Wang Y, Li L, Zou H, Wu T, Yao M, Wang J, Meng X. 2019; Dichloroacetate overcomes oxaliplatin chemoresistance in colorectal cancer through the miR-543/PTEN/Akt/mTOR pathway. J Cancer. 10:6037–6047. DOI:
10.7150/jca.34650. PMID:
31762813. PMCID:
PMC6856576.
Article
29. Liu B, Liu Y, Zhao L, Pan Y, Shan Y, Li Y, Jia L. 2017; Upregulation of microRNA-135b and microRNA-182 promotes chemoresistance of colorectal cancer by targeting ST6GALNAC2 via PI3K/AKT pathway. Mol Carcinog. 56:2669–2680. DOI:
10.1002/mc.22710. PMID:
28767179.
Article
30. Lu LL, Chen XH, Zhang G, Liu ZC, Wu N, Wang H, Qi YF, Wang HS, Cai SH, Du J. 2016; CCL21 facilitates chemoresistance and cancer stem cell-like properties of colorectal cancer cells through AKT/GSK-3β/Snail signals. Oxid Med Cell Longev. 2016:5874127. DOI:
10.1155/2016/5874127. PMID:
27057280. PMCID:
PMC4707330.
Article
31. Varga J, Nicolas A, Petrocelli V, Pesic M, Mahmoud A, Michels BE, Etlioglu E, Yepes D, Häupl B, Ziegler PK, Bankov K, Wild PJ, Wanninger S, Medyouf H, Farin HF, Tejpar S, Oellerich T, Ruland J, Siebel CW, Greten FR. 2020; AKT-dependent NOTCH3 activation drives tumor progression in a model of mesenchymal colorectal cancer. J Exp Med. 217:e20191515. DOI:
10.1084/jem.20191515. PMID:
32749453. PMCID:
PMC7537393.
Article
32. Yang H, Zhu J, Wang G, Liu H, Zhou Y, Qian J. 2020; STK35 is ubiquitinated by NEDD4L and promotes glycolysis and inhibits apoptosis through regulating the AKT signaling pathway, influencing chemoresistance of colorectal cancer. Front Cell Dev Biol. 8:582695. DOI:
10.3389/fcell.2020.582695. PMID:
33117809. PMCID:
PMC7578231.
Article
33. Dhanasekaran R, Deutzmann A, Mahauad-Fernandez WD, Hansen AS, Gouw AM, Felsher DW. 2022; The MYC oncogene - the grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol. 19:23–36. DOI:
10.1038/s41571-021-00549-2. PMID:
34508258. PMCID:
PMC9083341.
Article
37. Ren L, Zhou T, Wang Y, Wu Y, Xu H, Liu J, Dong X, Yi F, Guo Q, Wang Z, Li X, Bai N, Guo W, Guo M, Jiang B, Wu X, Feng Y, Song X, Zhang S, Zhao Y, et al. 2020; RNF8 induces β-catenin-mediated c-Myc expression and promotes colon cancer proliferation. Int J Biol Sci. 16:2051–2062. DOI:
10.7150/ijbs.44119. PMID:
32549753. PMCID:
PMC7294952.
Article
39. Tilija Pun N, Jang WJ, Jeong CH. 2020; Role of autophagy in regulation of cancer cell death/apoptosis during anti-cancer therapy: focus on autophagy flux blockade. Arch Pharm Res. 43:475–488. DOI:
10.1007/s12272-020-01239-w. PMID:
32458284.
Article
40. Porstmann T, Griffiths B, Chung YL, Delpuech O, Griffiths JR, Downward J, Schulze A. 2005; PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene. 24:6465–6481. DOI:
10.1038/sj.onc.1208802. PMID:
16007182.
Article
41. Yecies JL, Zhang HH, Menon S, Liu S, Yecies D, Lipovsky AI, Gorgun C, Kwiatkowski DJ, Hotamisligil GS, Lee CH, Manning BD. 2011; Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab. 14:21–32. Erratum in:
Cell Metab. 2011;14:280. DOI:
10.1016/j.cmet.2011.06.002. PMID:
21723501. PMCID:
PMC3652544.
Article
42. Yao M, Ma X, Zhang X, Shi L, Liu T, Liang X, Zhao H, Li X, Li L, Gao H, Jia B, Wang F. 2019; Lectin-mediated pH-sensitive doxorubicin prodrug for pre-targeted chemotherapy of colorectal cancer with enhanced efficacy and reduced side effects. Theranostics. 9:747–760. DOI:
10.7150/thno.29989. PMID:
30809306. PMCID:
PMC6376480.
Article
43. Stephenson W. 1993; Deficiencies in the National Institute of Health's guidelines for the care and protection of laboratory animals. J Med Philos. 18:375–388. DOI:
10.1093/jmp/18.4.375. PMID:
8228684.
Article
45. Moirangthem A, Bondhopadhyay B, Mukherjee M, Bandyopadhyay A, Mukherjee N, Konar K, Bhattacharya S, Basu A. 2016; Simultaneous knockdown of uPA and MMP9 can reduce breast cancer progression by increasing cell-cell adhesion and modulating EMT genes. Sci Rep. 6:21903. DOI:
10.1038/srep21903. PMID:
26906973. PMCID:
PMC4764826.
Article
46. Rabi ZA, Todorović-Raković N, Vujasinović T, Milovanović J, Nikolić-Vukosavljević D. 2015; Markers of progression and invasion in short term follow up of untreated breast cancer patients. Cancer Biomark. 15:745–754. DOI:
10.3233/CBM-150516. PMID:
26406416.
Article
47. Stefani C, Miricescu D, Stanescu-Spinu II, Nica RI, Greabu M, Totan AR, Jinga M. 2021; Growth factors, PI3K/AKT/mTOR and MAPK signaling pathways in colorectal cancer pathogenesis: where are we now? Int J Mol Sci. 22:10260. DOI:
10.3390/ijms221910260. PMID:
34638601. PMCID:
PMC8508474.
Article
48. Garte SJ. 1993; The c-myc oncogene in tumor progression. Crit Rev Oncog. 4:435–449.
49. Shin JY, Kim JO, Lee SK, Chae HS, Kang JH. 2010; LY294002 may overcome 5-FU resistance via down-regulation of activated p-AKT in Epstein-Barr virus-positive gastric cancer cells. BMC Cancer. 10:425. DOI:
10.1186/1471-2407-10-425. PMID:
20704765. PMCID:
PMC3087326.
Article
50. Kilkenny C, Browne WJ, Cuthi I, Emerson M, Altman DG. 2012; Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. Vet Clin Pathol. 41:27–31. DOI:
10.1111/j.1939-165X.2012.00418.x. PMID:
22390425.
Article
51. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. 2024; Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. DOI:
10.3322/caac.21834. PMID:
38572751.
Article
53. Hu D, Meng RY, Nguyen TV, Chai OH, Park BH, Lee JS, Kim SM. 2023; Inhibition of colorectal cancer tumorigenesis by ursolic acid and doxorubicin is mediated by targeting the Akt signaling pathway and activating the Hippo signaling pathway. Mol Med Rep. 27:11. DOI:
10.3892/mmr.2022.12898. PMID:
36382656. PMCID:
PMC9685224.
Article
54. Bishnupuri KS, Alvarado DM, Khouri AN, Shabsovich M, Chen B, Dieckgraefe BK, Ciorba MA. 2019; IDO1 and kynurenine pathway metabolites activate PI3K-Akt signaling in the neoplastic colon epithelium to promote cancer cell proliferation and inhibit apoptosis. Cancer Res. 79:1138–1150. DOI:
10.1158/0008-5472.CAN-18-0668. PMID:
30679179. PMCID:
PMC6420842.
Article
55. Lin J, Song T, Li C, Mao W. 2020; GSK-3β in DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy of cancer. Biochim Biophys Acta Mol Cell Res. 1867:118659. DOI:
10.1016/j.bbamcr.2020.118659. PMID:
31978503.
Article
57. Yang Yu, Morin PJ, Han WF, Chen T, Bornman DM, Gabrielson EW, Pizer ES. 2003; Regulation of fatty acid synthase expression in breast cancer by sterol regulatory element binding protein-1c. Exp Cell Res. 282:132–137. DOI:
10.1016/S0014-4827(02)00023-X. PMID:
12531699.
Article
58. Yahagi N, Shimano H, Hasegawa K, Ohashi K, Matsuzaka T, Najima Y, Sekiya M, Tomita S, Okazaki H, Tamura Y, Iizuka Y, Ohashi K, Nagai R, Ishibashi S, Kadowaki T, Makuuchi M, Ohnishi S, Osuga J, Yamada N. 2005; Co-ordinate activation of lipogenic enzymes in hepatocellular carcinoma. Eur J Cancer. 41:1316–1322. DOI:
10.1016/j.ejca.2004.12.037. PMID:
15869874.
Article
59. Calvisi DF, Wang C, Ho C, Ladu S, Lee SA, Mattu S, Destefanis G, Delogu S, Zimmermann A, Ericsson J, Brozzetti S, Staniscia T, Chen X, Dombrowski F, Evert M. 2011; Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology. 140:1071–1083. DOI:
10.1053/j.gastro.2010.12.006. PMID:
21147110. PMCID:
PMC3057329.
Article
60. Yamashita T, Honda M, Takatori H, Nishino R, Minato H, Takamura H, Ohta T, Kaneko S. 2009; Activation of lipogenic pathway correlates with cell proliferation and poor prognosis in hepatocellular carcinoma. J Hepatol. 50:100–110. DOI:
10.1016/j.jhep.2008.07.036. PMID:
19008011.
Article
61. Arcamone F, Cassinelli G, Fantini G, Grein A, Orezzi P, Pol C, Spalla C. 2000; Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from S. peucetius var. caesius. Reprinted from Biotechnology and Bioengineering, Vol. XI, Issue 6, Pages 1101-1110 (1969). Biotechnol Bioeng. 67:704–713. DOI:
10.1002/(SICI)1097-0290(20000320)67:6<704::AID-BIT8>3.0.CO;2-L.
Article
62. Li X, Chen YT, Hu P, Huang WC. 2014; Fatostatin displays high antitumor activity in prostate cancer by blocking SREBP-regulated metabolic pathways and androgen receptor signaling. Mol Cancer Ther. 13:855–866. DOI:
10.1158/1535-7163.MCT-13-0797. PMID:
24493696. PMCID:
PMC4084917.
Article
63. Yang N, Li C, Li H, Liu M, Cai X, Cao F, Feng Y, Li M, Wang X. 2019; Emodin induced SREBP1-dependent and SREBP1-independent apoptosis in hepatocellular carcinoma cells. Front Pharmacol. 10:709. DOI:
10.3389/fphar.2019.00709. PMID:
31297058. PMCID:
PMC6607744.
Article
65. Eberlin LS, Gabay M, Fan AC, Gouw AM, Tibshirani RJ, Felsher DW, Zare RN. 2014; Alteration of the lipid profile in lymphomas induced by MYC overexpression. Proc Natl Acad Sci U S A. 111:10450–10455. DOI:
10.1073/pnas.1409778111. PMID:
24994904. PMCID:
PMC4115527.
Article
66. Shroff EH, Eberlin LS, Dang VM, Gouw AM, Gabay M, Adam SJ, Bellovin DI, Tran PT, Philbrick WM, Garcia-Ocana A, Casey SC, Li Y, Dang CV, Zare RN, Felsher DW. 2015; MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism. Proc Natl Acad Sci U S A. 112:6539–6544. DOI:
10.1073/pnas.1507228112. PMID:
25964345. PMCID:
PMC4450371.
Article
67. Liang JH, Wang WT, Wang R, Gao R, Du KX, Duan ZW, Zhang XY, Li Y, Wu JZ, Yin H, Shen HR, Wang L, Li JY, Guo JR, Xu W. 2024; PRMT5 activates lipid metabolic reprogramming via MYC contributing to the growth and survival of mantle cell lymphoma. Cancer Lett. 591:216877. DOI:
10.1016/j.canlet.2024.216877. PMID:
38615930.
Article
68. Gouw AM, Margulis K, Liu NS, Raman SJ, Mancuso A, Toal GG, Tong L, Mosley A, Hsieh AL, Sullivan DK, Stine ZE, Altman BJ, Schulze A, Dang CV, Zare RN, Felsher DW. 2019; The MYC oncogene cooperates with sterol-regulated element-binding protein to regulate lipogenesis essential for neoplastic growth. Cell Metab. 30:556–572.e5. DOI:
10.1016/j.cmet.2019.07.012. PMID:
31447321. PMCID:
PMC6911354.
Article
69. Wu G, Qin S, Gu K, Zhou Y. 2024; PYCR2, induced by c-Myc, promotes the invasiveness and metastasis of breast cancer by activating AKT signalling pathway. Int J Biochem Cell Biol. 166:106506. DOI:
10.1016/j.biocel.2023.106506. PMID:
38101533.
Article
70. Yang L, Liu Y, Wang M, Qian Y, Dong X, Gu H, Wang H, Guo S, Hisamitsu T. 2016; Quercetin-induced apoptosis of HT-29 colon cancer cells via inhibition of the Akt-CSN6-Myc signaling axis. Mol Med Rep. 14:4559–4566. DOI:
10.3892/mmr.2016.5818. PMID:
27748879. PMCID:
PMC5101998.
Article
71. Lee KC, Wu KL, Yen CK, Chen CN, Chang SF, Huang WS. 2021; 6-shogaol antagonizes the adipocyte-conditioned medium-initiated 5-fluorouracil resistance in human colorectal cancer cells through controlling the SREBP-1 level. Life (Basel). 11:1067. DOI:
10.3390/life11101067. PMID:
34685438. PMCID:
PMC8537026.
Article
72. Wu C, Chen S, Wu Z, Xue J, Zhang W, Wang S, Wu S. Xindong Zhao. 2024; Chidamide and orelabrutinib synergistically induce cell cycle arrest and apoptosis in diffuse large B-cell lymphoma by regulating the PI3K/AKT/mTOR pathway. J Cancer Res Clin Oncol. 150:98. DOI:
10.1007/s00432-024-05615-7. PMID:
38381215. PMCID:
PMC10881688.
Article
73. Lim JS, Kyung SY, Jeon Y, Kim IS, Kwak JH, Kim HS. 2023; Anticancer effects of the HDAC inhibitor, 3β,6β-dihydroxyurs-12-en-27-oic acid, in MCF7 breast cancer cells via the inhibition of Akt/mTOR pathways. Oncol Rep. 49:43. DOI:
10.3892/or.2023.8480. PMID:
36633143. PMCID:
PMC9868892.
Article
74. Zheng Y, Yang X, Wang C, Zhang S, Wang Z, Li M, Wang Y, Wang X, Yang X. 2020; HDAC6, modulated by miR-206, promotes endometrial cancer progression through the PTEN/AKT/mTOR pathway. Sci Rep. 10:3576. Erratum in:
Sci Rep. 2024;14:16144. DOI:
10.1038/s41598-020-60271-4. PMID:
32107418. PMCID:
PMC7046652.
Article
75. Zhu T, Zhao D, Song Z, Yuan Z, Li C, Wang Y, Zhou X, Yin X, Hassan MF, Yang L. 2016; HDAC6 alleviates prion peptide-mediated neuronal death via modulating PI3K-Akt-mTOR pathway. Neurobiol Aging. 37:91–102. DOI:
10.1016/j.neurobiolaging.2015.09.021. PMID:
26507311.
Article