Korean J Physiol Pharmacol.  2025 May;29(3):321-335. 10.4196/kjpp.24.274.

Enhancing doxorubicin’s anticancer impact in colorectal cancer by targeting the Akt/Gsk3β/mTOR-SREBP1 signaling axis with an HDAC inhibitor

Affiliations
  • 1Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54907, Korea
  • 2Research Institute of Clinical Medicine, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea

Abstract

Colorectal cancer ranks third in global incidence and is the second leading cause of cancer-related mortality. Doxorubicin, an anthracycline chemotherapeutic drug, is integral to current cancer treatment protocols. However, toxicity and resistance to doxorubicin poses a significant challenge to effective therapy. Panobinostat has emerged as a critical agent in colorectal cancer treatment due to its potential to overcome doxorubicin resistance and enhance the efficacy of existing therapeutic protocols. This study aimed to evaluate the capability of panobinostat to surmount doxorubicin toxicity and resistance in colorectal cancer. Specifically, we assessed the efficacy of panobinostat in enhancing the therapeutic response to doxorubicin in colorectal cancer cells and explored the potential synergistic effects of their combined treatment. Our results demonstrate that the combination treatment significantly reduces cell viability and colony-forming ability in colorectal cancer cells compared to individual treatments. The combination induces significant apoptosis, as evidenced by increased levels of cleaved PARP and cleaved caspase-9, while also resulting in a greater reduction in p-Akt/p-GSK-3β/mTOR expression, along with substantial decreases in c-Myc and SREBP-1 levels, compared to monotherapies. Consistent with the in vitro experimental results, the combination treatment significantly inhibited tumor formation in colorectal cancer xenograft nude mice compared to the groups treated with either agent alone. In conclusion, our research suggests that the panobinostat effectively enhances the effect of doxorubicin and combination of two drugs significantly reduced colorectal cancer tumor growth by targeting the Akt/ GSK-3β/mTOR signaling pathway, indicating a synergistic therapeutic potential of these two drugs in colorectal cancer treatment.

Keyword

c-Myc; Colorectal neoplasms; Doxorubicin; Panobinostat; Proto-Oncogene Proteins c-akt/ glycogen synthase kinase-3 beta/ mammalian target of rapamycin; Sterol regulatory element binding protein 1

Figure

  • Fig. 1 The combination treatment of PAN and DOX inhibited cell proliferation and colony formation in HCT116 and SW480 CRC cells. (A) SW480 and HCT116 cells were treated with 5 nM PAN, 0.5 µM DOX, or the combination. Cell viability assays were used to evaluate cell proliferation. (B) Colony formation assay. The combination treatment of PAN and DOX significantly inhibited colony formation of HCT116 and SW480 cells compared to the single agents alone. Data represent the mean ± SEM of three separate, triplicate-dish tests. CRC, colorectal cancer; DMSO, dimethyl sulfoxide; CONT, control; PAN, panobinostat; DOX, doxorubicin. **p < 0.01 compared to the control group; ##p < 0.01 compared to the combination group.

  • Fig. 2 Effect of PAN and DOX on the apoptosis of HCT116 and SW480 CRC cells. (A) The CRC cells were collected to assess the apoptotic rate using FITC/PI double positive staining following treatment with PAN, DOX, or the combination. (B) The proportion of Sub-G1 increased after treatment with PAN, DOX, or the combination. (C) Following treatment of CRC cells with PAN, DOX, or the combination for 48 h, apoptosis-associated proteins c-PARP, PARP, c-Caspase 9, and Caspase 9 expression were semi-quantified by Western blotting. Values were normalized to GAPDH. Data represent the mean ± SEM of three separate, triplicate-dish tests. CRC, colorectal cancer; CONT, control; PAN, panobinostat; DOX, doxorubicin; PI, propidium iodide; PARP, poly (ADP-ribose) polymerase 1; c, cleaved; n.s., not significant. *p < 0.05 and **p < 0.01 compared to the control group; #p < 0.05 and ##p < 0.01 compared to the combination group.

  • Fig. 3 Effects of PAN and DOX on migration of HCT116 and SW480 CRC cells. (A) The migration rate of CRC cells was assessed by wound healing assay following treatment with PAN, DOX, or the combination treatment. The cell migration ability was significantly inhibited when treated with PAN and DOX at 24 h and 48 h. (B) Migration-related protein expression levels of E-cadherin, uPA, and MMP-9 were semi-quantified by Western blotting following treatment with PAN, DOX, or the combination treatment. Data are the mean ± SEM of more than three independent experiments with triplicate dishes. CRC, colorectal cancer; CONT, control; PAN, panobinostat; DOX, doxorubicin; MMP-9, matrix metalloproteinase-9; uPA, urokinase-type plasminogen activator; n.s., not significant; *p < 0.05 and **p < 0.01 compared to the control group; #p < 0.05 and ##p < 0.01 compared to the combination group.

  • Fig. 4 Effects of PAN and DOX on Akt signaling. Protein expression levels of Akt, p-Akt, Gsk3β, and p-Gsk3β were assessed using Western blotting following treatment with PAN, DOX, or the combination for 48 h. Values were normalized to GAPDH. Data represent the mean ± SEM of three separate, triplicate-dish tests. CONT, control; PAN, panobinostat; DOX, doxorubicin; p, phosphorylated; Gsk3β, glycogen synthase kinase 3β; n.s., not significant. *p < 0.05 and **p < 0.01 compared to the control group; ##p < 0.01 compared to the combination group.

  • Fig. 5 Effects of PAN and DOX on the Akt/mTOR signaling pathway following activation or inhibition of Akt expression. (A) Protein expression levels of mTOR, p-mTOR, p70S6K, and p-p70S6K were assessed using Western blotting following treatment with PAN, DOX, or the combination. (B) Protein expression levels of c-Myc and SREBP-1 were assessed using Western blotting following treatment with PAN, DOX, or the combination. (C) Protein expression levels of Akt signaling pathway and downstream proteins were assessed using Western blotting following treatment with an activator (SC79) or inhibitor (LY294002) of Akt, PAN, DOX, or the combination. Values were normalized to GAPDH. Data represent the mean ± SEM of three separate, triplicate-dish tests. CONT, control; PAN, panobinostat; DOX, doxorubicin; p, phosphorylated; mTOR, mammalian target of rapamycin; p70S6K, ribosomal protein S6 kinase beta-1; SREBP-1, sterol regulatory element-binding protein 1; n.s., not significant. *p < 0.05 and **p < 0.01 compared to the control group; #p < 0.05 and ##p < 0.01 compared to the combination group.

  • Fig. 6 In vivo effects of PAN and DOX on the tumor growth of HCT116 xenograft mouse model. (A) On day 0, a xenograft mouse model was established and treated with DMSO, PAN, DOX or PAN + DOX on days 6 through 26. On day 26, all mice were sacrificed and samples were harvested. (B) After therapy, the body weight of the mice with tumors was measured every two days. (C) Representative tumor images and (D) final tumor weight was obtained at the end of the experiment. (E) The tumor volume was monitored every two days. Values were normalized to GAPDH. (F) ALT, (G) AST, (H) BUN, and (I) creatinine levels were assessed. (J) The protein levels of Akt, p-Akt, p70S6K, p-p70S6K, c-Myc, and SREBP-1 from mouse tissue were measured. Three samples were selected randomly from each group. Values were normalized to GAPDH. Data represent the mean ± SEM of more than three separate, triplicate-dish tests. DMSO, dimethyl sulfoxide; CONT, control; PAN, panobinostat; DOX, doxorubicin; p, phosphorylated; mTOR, mammalian target of rapamycin; p70S6K, ribosomal protein S6 kinase beta-1; SREBP-1, sterol regulatory element-binding protein 1; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BUN, blood urea nitrogen; n.s., not significant. *p < 0.05 and **p < 0.01 compared to the control group; #p < 0.05 and ##p < 0.01, compared to the combination group.

  • Fig. 7 Schematic diagram. The combination treatment of PAN and DOX inhibits cell growth and induces apoptosis of CRC cells by targeting the Akt signaling pathway. LY294002 further inhibits Akt activity and its downstream functions after treatment with the combination of PAN and DOX. CRC, colorectal cancer; PAN, panobinostat; DOX, doxorubicin; p, phosphorylated; Gsk3β, glycogen synthase kinase 3β; mTOR, mammalian target of rapamycin; P70S6K, ribosomal protein S6 kinase beta-1; SREBP-1, sterol regulatory element-binding protein 1; MMP-9, matrix metalloproteinase-9; uPA, urokinase-type plasminogen activator; PARP, poly (ADP-ribose) polymerase.


Reference

1. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. 2017; Global patterns and trends in colorectal cancer incidence and mortality. Gut. 66:683–691. DOI: 10.1136/gutjnl-2015-310912. PMID: 26818619.
Article
2. Shin DW, Chang D, Jung JH, Han K, Kim SY, Choi KS, Lee WC, Park JH, Park JH. 2020; Disparities in the participation rate of colorectal cancer screening by fecal occult blood test among people with disabilities: a national database study in South Korea. Cancer Res Treat. 52:60–73. DOI: 10.4143/crt.2018.660. PMID: 31096735. PMCID: PMC6962481.
Article
3. Yang SY, Cho MS, Kim NK. 2018; Difference between right-sided and left-sided colorectal cancers: from embryology to molecular subtype. Expert Rev Anticancer Ther. 18:351–358. DOI: 10.1080/14737140.2018.1442217. PMID: 29458272.
Article
4. McQuade RM, Stojanovska V, Bornstein JC, Nurgali K. 2017; Colorectal cancer chemotherapy: the evolution of treatment and new approaches. Curr Med Chem. 24:1537–1557. DOI: 10.2174/0929867324666170111152436. PMID: 28079003.
Article
5. Kciuk M, Gielecińska A, Mujwar S, Kołat D, Kałuzińska-Kołat Ż, Celik I, Kontek R. 2023; Doxorubicin-An agent with multiple mechanisms of anticancer activity. Cells. 12:659. DOI: 10.3390/cells12040659. PMID: 36831326. PMCID: PMC9954613.
Article
6. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. 2004; Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 56:185–229. DOI: 10.1124/pr.56.2.6. PMID: 15169927.
Article
7. Bolden JE, Peart MJ, Johnstone RW. 2006; Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 5:769–784. DOI: 10.1038/nrd2133. PMID: 16955068.
Article
8. Sivaraj D, Green MM, Gasparetto C. 2017; Panobinostat for the management of multiple myeloma. Future Oncol. 13:477–488. DOI: 10.2217/fon-2016-0329. PMID: 27776419.
Article
9. Laubach JP, Moreau P, San-Miguel JF, Richardson PG. 2015; Panobinostat for the treatment of multiple myeloma. Clin Cancer Res. 21:4767–4773. DOI: 10.1158/1078-0432.CCR-15-0530. PMID: 26362997.
Article
10. Moskowitz AJ, Horwitz SM. 2017; Targeting histone deacetylases in T-cell lymphoma. Leuk Lymphoma. 58:1306–1319. DOI: 10.1080/10428194.2016.1247956. PMID: 27813438.
Article
11. Oki Y, Copeland A, Younes A. 2011; Clinical development of panobinostat in classical Hodgkin's lymphoma. Expert Rev Hematol. 4:245–252. DOI: 10.1586/ehm.11.24. PMID: 21668391.
Article
12. Schlenk RF, Krauter J, Raffoux E, Kreuzer KA, Schaich M, Noens L, Pabst T, Vusirikala M, Bouscary D, Spencer A, Candoni A, Gil JS, Berkowitz N, Weber HJ, Ottmann O. 2018; Panobinostat monotherapy and combination therapy in patients with acute myeloid leukemia: results from two clinical trials. Haematologica. 103:e25–e28. DOI: 10.3324/haematol.2017.172411. PMID: 29051280. PMCID: PMC5777210.
Article
13. Tan WW, Allred JB, Moreno-Aspitia A, Northfelt DW, Ingle JN, Goetz MP, Perez EA. 2016; Phase I study of panobinostat (LBH589) and letrozole in postmenopausal metastatic breast cancer patients. Clin Breast Cancer. 16:82–86. DOI: 10.1016/j.clbc.2015.11.003. PMID: 26774555. PMCID: PMC5567753.
Article
14. Rathkopf DE, Picus J, Hussain A, Ellard S, Chi KN, Nydam T, Allen-Freda E, Mishra KK, Porro MG, Scher HI, Wilding G. 2013; A phase 2 study of intravenous panobinostat in patients with castration-resistant prostate cancer. Cancer Chemother Pharmacol. 72:537–544. DOI: 10.1007/s00280-013-2224-8. PMID: 23820963. PMCID: PMC3970811.
Article
15. Thomas S, Aggarwal R, Jahan T, Ryan C, Troung T, Cripps AM, Raha P, Thurn KT, Chen S, Grabowsky JA, Park J, Hwang J, Daud A, Munster PN. 2016; A phase I trial of panobinostat and epirubicin in solid tumors with a dose expansion in patients with sarcoma. Ann Oncol. 27:947–952. DOI: 10.1093/annonc/mdw044. PMID: 26903311. PMCID: PMC4843187.
Article
16. Marks PA, Jiang X. 2005; Histone deacetylase inhibitors in programmed cell death and cancer therapy. Cell Cycle. 4:549–551. DOI: 10.4161/cc.4.4.1564. PMID: 15738652.
Article
17. Marks PA, Richon VM, Kelly WK, Chiao JH, Miller T. 2004; Histone deacetylase inhibitors: development as cancer therapy. Novartis Found Symp. 259:269–281. discussion 281-288. DOI: 10.1002/0470862637.ch20. PMID: 15171260.
Article
18. Marks PA, Richon VM, Breslow R, Rifkind RA. 2001; Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol. 13:477–483. DOI: 10.1097/00001622-200111000-00010. PMID: 11673688.
Article
19. Geng H, Zheng F, Sun W, Huang S, Wang Z, Yang K, Wang C, Tian C, Xu C, Zhai G, Zhao M, Hou S, Song A, Zhang Y, Zhao Q. 2024; Effect and mechanism of novel HDAC inhibitor ZDLT-1 in colorectal cancer by regulating apoptosis and inflammation. Int Immunopharmacol. 143:113333. DOI: 10.1016/j.intimp.2024.113333. PMID: 39383785.
Article
20. Wang F, Jin Y, Wang M, Luo HY, Fang WJ, Wang YN, Chen YX, Huang RJ, Guan WL, Li JB, Li YH, Wang FH, Hu XH, Zhang YQ, Qiu MZ, Liu LL, Wang ZX, Ren C, Wang DS, Zhang DS, et al. 2024; Combined anti-PD-1, HDAC inhibitor and anti-VEGF for MSS/pMMR colorectal cancer: a randomized phase 2 trial. Nat Med. 30:1035–1043. DOI: 10.1038/s41591-024-02813-1. PMID: 38438735.
Article
21. Wilson PM, Labonte MJ, Martin SC, Kuwahara ST, El-Khoueiry A, Lenz HJ, Ladner RD. 2013; Sustained inhibition of deacetylases is required for the antitumor activity of the histone deactylase inhibitors panobinostat and vorinostat in models of colorectal cancer. Invest New Drugs. 31:845–857. DOI: 10.1007/s10637-012-9914-7. PMID: 23299388.
Article
22. Maharati A, Moghbeli M. 2023; PI3K/AKT signaling pathway as a critical regulator of epithelial-mesenchymal transition in colorectal tumor cells. Cell Commun Signal. 21:201. DOI: 10.1186/s12964-023-01225-x. PMID: 37580737. PMCID: PMC10424373.
Article
23. Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, Eng H, Nair MG, Makvandi P, Geoerger B, Kulke MH, Baird RD, Prabhu JS, Carbone D, Pecoraro C, Teh DBL, Sethi G, Cavalieri V, Lin KH, Javidi-Sharifi NR, et al. 2023; PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer. 22:138. DOI: 10.1186/s12943-023-01827-6. PMID: 37596643. PMCID: PMC10436543.
Article
24. Yang L, Dong Z, Li S, Chen T. 2023; ESM1 promotes angiogenesis in colorectal cancer by activating PI3K/Akt/mTOR pathway, thus accelerating tumor progression. Aging (Albany NY). 15:2920–2936. DOI: 10.18632/aging.204559. PMID: 37100467. PMCID: PMC10188330.
Article
25. Guan S, Yang R, Wu S, Xu K, Yang C. 2022; The CD133+CXCR4+ colorectal tumor cells promote colorectal cancer progression by PI3K/AKT signaling. J Interferon Cytokine Res. 42:195–202. DOI: 10.1089/jir.2021.0207. PMID: 35377243.
Article
26. Itoh N, Semba S, Ito M, Takeda H, Kawata S, Yamakawa M. 2002; Phosphorylation of Akt/PKB is required for suppression of cancer cell apoptosis and tumor progression in human colorectal carcinoma. Cancer. 94:3127–3134. DOI: 10.1002/cncr.10591. PMID: 12115344.
Article
27. Hu J, Li G, Liu L, Wang Y, Li X, Gong J. 2017; AF1q mediates tumor progression in colorectal cancer by regulating AKT signaling. Int J Mol Sci. 18:987. DOI: 10.3390/ijms18050987. PMID: 28475127. PMCID: PMC5454900.
Article
28. Liang Y, Zhu D, Zhu L, Hou Y, Hou L, Huang X, Li L, Wang Y, Li L, Zou H, Wu T, Yao M, Wang J, Meng X. 2019; Dichloroacetate overcomes oxaliplatin chemoresistance in colorectal cancer through the miR-543/PTEN/Akt/mTOR pathway. J Cancer. 10:6037–6047. DOI: 10.7150/jca.34650. PMID: 31762813. PMCID: PMC6856576.
Article
29. Liu B, Liu Y, Zhao L, Pan Y, Shan Y, Li Y, Jia L. 2017; Upregulation of microRNA-135b and microRNA-182 promotes chemoresistance of colorectal cancer by targeting ST6GALNAC2 via PI3K/AKT pathway. Mol Carcinog. 56:2669–2680. DOI: 10.1002/mc.22710. PMID: 28767179.
Article
30. Lu LL, Chen XH, Zhang G, Liu ZC, Wu N, Wang H, Qi YF, Wang HS, Cai SH, Du J. 2016; CCL21 facilitates chemoresistance and cancer stem cell-like properties of colorectal cancer cells through AKT/GSK-3β/Snail signals. Oxid Med Cell Longev. 2016:5874127. DOI: 10.1155/2016/5874127. PMID: 27057280. PMCID: PMC4707330.
Article
31. Varga J, Nicolas A, Petrocelli V, Pesic M, Mahmoud A, Michels BE, Etlioglu E, Yepes D, Häupl B, Ziegler PK, Bankov K, Wild PJ, Wanninger S, Medyouf H, Farin HF, Tejpar S, Oellerich T, Ruland J, Siebel CW, Greten FR. 2020; AKT-dependent NOTCH3 activation drives tumor progression in a model of mesenchymal colorectal cancer. J Exp Med. 217:e20191515. DOI: 10.1084/jem.20191515. PMID: 32749453. PMCID: PMC7537393.
Article
32. Yang H, Zhu J, Wang G, Liu H, Zhou Y, Qian J. 2020; STK35 is ubiquitinated by NEDD4L and promotes glycolysis and inhibits apoptosis through regulating the AKT signaling pathway, influencing chemoresistance of colorectal cancer. Front Cell Dev Biol. 8:582695. DOI: 10.3389/fcell.2020.582695. PMID: 33117809. PMCID: PMC7578231.
Article
33. Dhanasekaran R, Deutzmann A, Mahauad-Fernandez WD, Hansen AS, Gouw AM, Felsher DW. 2022; The MYC oncogene - the grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol. 19:23–36. DOI: 10.1038/s41571-021-00549-2. PMID: 34508258. PMCID: PMC9083341.
Article
34. Poole CJ, van Riggelen J. 2017; MYC-master regulator of the cancer epigenome and transcriptome. Genes (Basel). 8:142. DOI: 10.3390/genes8050142. PMID: 28505071. PMCID: PMC5448016.
Article
35. Miller DM, Thomas SD, Islam A, Muench D, Sedoris K. 2012; c-Myc and cancer metabolism. Clin Cancer Res. 18:5546–5553. DOI: 10.1158/1078-0432.CCR-12-0977. PMID: 23071356. PMCID: PMC3505847.
Article
36. Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV. 2015; MYC, metabolism, and cancer. Cancer Discov. 5:1024–1039. DOI: 10.1158/2159-8290.CD-15-0507. PMID: 26382145. PMCID: PMC4592441.
Article
37. Ren L, Zhou T, Wang Y, Wu Y, Xu H, Liu J, Dong X, Yi F, Guo Q, Wang Z, Li X, Bai N, Guo W, Guo M, Jiang B, Wu X, Feng Y, Song X, Zhang S, Zhao Y, et al. 2020; RNF8 induces β-catenin-mediated c-Myc expression and promotes colon cancer proliferation. Int J Biol Sci. 16:2051–2062. DOI: 10.7150/ijbs.44119. PMID: 32549753. PMCID: PMC7294952.
Article
38. Zhao Q, Lin X, Wang G. 2022; Targeting SREBP-1-mediated lipogenesis as potential strategies for cancer. Front Oncol. 12:952371. DOI: 10.3389/fonc.2022.952371. PMID: 35912181. PMCID: PMC9330218.
Article
39. Tilija Pun N, Jang WJ, Jeong CH. 2020; Role of autophagy in regulation of cancer cell death/apoptosis during anti-cancer therapy: focus on autophagy flux blockade. Arch Pharm Res. 43:475–488. DOI: 10.1007/s12272-020-01239-w. PMID: 32458284.
Article
40. Porstmann T, Griffiths B, Chung YL, Delpuech O, Griffiths JR, Downward J, Schulze A. 2005; PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene. 24:6465–6481. DOI: 10.1038/sj.onc.1208802. PMID: 16007182.
Article
41. Yecies JL, Zhang HH, Menon S, Liu S, Yecies D, Lipovsky AI, Gorgun C, Kwiatkowski DJ, Hotamisligil GS, Lee CH, Manning BD. 2011; Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab. 14:21–32. Erratum in: Cell Metab. 2011;14:280. DOI: 10.1016/j.cmet.2011.06.002. PMID: 21723501. PMCID: PMC3652544.
Article
42. Yao M, Ma X, Zhang X, Shi L, Liu T, Liang X, Zhao H, Li X, Li L, Gao H, Jia B, Wang F. 2019; Lectin-mediated pH-sensitive doxorubicin prodrug for pre-targeted chemotherapy of colorectal cancer with enhanced efficacy and reduced side effects. Theranostics. 9:747–760. DOI: 10.7150/thno.29989. PMID: 30809306. PMCID: PMC6376480.
Article
43. Stephenson W. 1993; Deficiencies in the National Institute of Health's guidelines for the care and protection of laboratory animals. J Med Philos. 18:375–388. DOI: 10.1093/jmp/18.4.375. PMID: 8228684.
Article
44. Fang C, Kang Y. 2021; E-Cadherin: context-dependent functions of a quintessential epithelial marker in metastasis. Cancer Res. 81:5800–5802. DOI: 10.1158/0008-5472.CAN-21-3302. PMID: 34853039.
Article
45. Moirangthem A, Bondhopadhyay B, Mukherjee M, Bandyopadhyay A, Mukherjee N, Konar K, Bhattacharya S, Basu A. 2016; Simultaneous knockdown of uPA and MMP9 can reduce breast cancer progression by increasing cell-cell adhesion and modulating EMT genes. Sci Rep. 6:21903. DOI: 10.1038/srep21903. PMID: 26906973. PMCID: PMC4764826.
Article
46. Rabi ZA, Todorović-Raković N, Vujasinović T, Milovanović J, Nikolić-Vukosavljević D. 2015; Markers of progression and invasion in short term follow up of untreated breast cancer patients. Cancer Biomark. 15:745–754. DOI: 10.3233/CBM-150516. PMID: 26406416.
Article
47. Stefani C, Miricescu D, Stanescu-Spinu II, Nica RI, Greabu M, Totan AR, Jinga M. 2021; Growth factors, PI3K/AKT/mTOR and MAPK signaling pathways in colorectal cancer pathogenesis: where are we now? Int J Mol Sci. 22:10260. DOI: 10.3390/ijms221910260. PMID: 34638601. PMCID: PMC8508474.
Article
48. Garte SJ. 1993; The c-myc oncogene in tumor progression. Crit Rev Oncog. 4:435–449.
49. Shin JY, Kim JO, Lee SK, Chae HS, Kang JH. 2010; LY294002 may overcome 5-FU resistance via down-regulation of activated p-AKT in Epstein-Barr virus-positive gastric cancer cells. BMC Cancer. 10:425. DOI: 10.1186/1471-2407-10-425. PMID: 20704765. PMCID: PMC3087326.
Article
50. Kilkenny C, Browne WJ, Cuthi I, Emerson M, Altman DG. 2012; Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. Vet Clin Pathol. 41:27–31. DOI: 10.1111/j.1939-165X.2012.00418.x. PMID: 22390425.
Article
51. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. 2024; Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. DOI: 10.3322/caac.21834. PMID: 38572751.
Article
52. Kim JH. 2015; Chemotherapy for colorectal cancer in the elderly. World J Gastroenterol. 21:5158–5166. DOI: 10.3748/wjg.v21.i17.5158. PMID: 25954089. PMCID: PMC4419056.
Article
53. Hu D, Meng RY, Nguyen TV, Chai OH, Park BH, Lee JS, Kim SM. 2023; Inhibition of colorectal cancer tumorigenesis by ursolic acid and doxorubicin is mediated by targeting the Akt signaling pathway and activating the Hippo signaling pathway. Mol Med Rep. 27:11. DOI: 10.3892/mmr.2022.12898. PMID: 36382656. PMCID: PMC9685224.
Article
54. Bishnupuri KS, Alvarado DM, Khouri AN, Shabsovich M, Chen B, Dieckgraefe BK, Ciorba MA. 2019; IDO1 and kynurenine pathway metabolites activate PI3K-Akt signaling in the neoplastic colon epithelium to promote cancer cell proliferation and inhibit apoptosis. Cancer Res. 79:1138–1150. DOI: 10.1158/0008-5472.CAN-18-0668. PMID: 30679179. PMCID: PMC6420842.
Article
55. Lin J, Song T, Li C, Mao W. 2020; GSK-3β in DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy of cancer. Biochim Biophys Acta Mol Cell Res. 1867:118659. DOI: 10.1016/j.bbamcr.2020.118659. PMID: 31978503.
Article
56. Peng Y, Wang Y, Zhou C, Mei W, Zeng C. 2022; PI3K/Akt/mTOR pathway and its role in cancer therapeutics: are we making headway? Front Oncol. 12:819128. DOI: 10.3389/fonc.2022.819128. PMID: 35402264. PMCID: PMC8987494.
Article
57. Yang Yu, Morin PJ, Han WF, Chen T, Bornman DM, Gabrielson EW, Pizer ES. 2003; Regulation of fatty acid synthase expression in breast cancer by sterol regulatory element binding protein-1c. Exp Cell Res. 282:132–137. DOI: 10.1016/S0014-4827(02)00023-X. PMID: 12531699.
Article
58. Yahagi N, Shimano H, Hasegawa K, Ohashi K, Matsuzaka T, Najima Y, Sekiya M, Tomita S, Okazaki H, Tamura Y, Iizuka Y, Ohashi K, Nagai R, Ishibashi S, Kadowaki T, Makuuchi M, Ohnishi S, Osuga J, Yamada N. 2005; Co-ordinate activation of lipogenic enzymes in hepatocellular carcinoma. Eur J Cancer. 41:1316–1322. DOI: 10.1016/j.ejca.2004.12.037. PMID: 15869874.
Article
59. Calvisi DF, Wang C, Ho C, Ladu S, Lee SA, Mattu S, Destefanis G, Delogu S, Zimmermann A, Ericsson J, Brozzetti S, Staniscia T, Chen X, Dombrowski F, Evert M. 2011; Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology. 140:1071–1083. DOI: 10.1053/j.gastro.2010.12.006. PMID: 21147110. PMCID: PMC3057329.
Article
60. Yamashita T, Honda M, Takatori H, Nishino R, Minato H, Takamura H, Ohta T, Kaneko S. 2009; Activation of lipogenic pathway correlates with cell proliferation and poor prognosis in hepatocellular carcinoma. J Hepatol. 50:100–110. DOI: 10.1016/j.jhep.2008.07.036. PMID: 19008011.
Article
61. Arcamone F, Cassinelli G, Fantini G, Grein A, Orezzi P, Pol C, Spalla C. 2000; Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from S. peucetius var. caesius. Reprinted from Biotechnology and Bioengineering, Vol. XI, Issue 6, Pages 1101-1110 (1969). Biotechnol Bioeng. 67:704–713. DOI: 10.1002/(SICI)1097-0290(20000320)67:6<704::AID-BIT8>3.0.CO;2-L.
Article
62. Li X, Chen YT, Hu P, Huang WC. 2014; Fatostatin displays high antitumor activity in prostate cancer by blocking SREBP-regulated metabolic pathways and androgen receptor signaling. Mol Cancer Ther. 13:855–866. DOI: 10.1158/1535-7163.MCT-13-0797. PMID: 24493696. PMCID: PMC4084917.
Article
63. Yang N, Li C, Li H, Liu M, Cai X, Cao F, Feng Y, Li M, Wang X. 2019; Emodin induced SREBP1-dependent and SREBP1-independent apoptosis in hepatocellular carcinoma cells. Front Pharmacol. 10:709. DOI: 10.3389/fphar.2019.00709. PMID: 31297058. PMCID: PMC6607744.
Article
64. Dang CV. 2012; MYC on the path to cancer. Cell. 149:22–35. DOI: 10.1016/j.cell.2012.03.003. PMID: 22464321. PMCID: PMC3345192.
Article
65. Eberlin LS, Gabay M, Fan AC, Gouw AM, Tibshirani RJ, Felsher DW, Zare RN. 2014; Alteration of the lipid profile in lymphomas induced by MYC overexpression. Proc Natl Acad Sci U S A. 111:10450–10455. DOI: 10.1073/pnas.1409778111. PMID: 24994904. PMCID: PMC4115527.
Article
66. Shroff EH, Eberlin LS, Dang VM, Gouw AM, Gabay M, Adam SJ, Bellovin DI, Tran PT, Philbrick WM, Garcia-Ocana A, Casey SC, Li Y, Dang CV, Zare RN, Felsher DW. 2015; MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism. Proc Natl Acad Sci U S A. 112:6539–6544. DOI: 10.1073/pnas.1507228112. PMID: 25964345. PMCID: PMC4450371.
Article
67. Liang JH, Wang WT, Wang R, Gao R, Du KX, Duan ZW, Zhang XY, Li Y, Wu JZ, Yin H, Shen HR, Wang L, Li JY, Guo JR, Xu W. 2024; PRMT5 activates lipid metabolic reprogramming via MYC contributing to the growth and survival of mantle cell lymphoma. Cancer Lett. 591:216877. DOI: 10.1016/j.canlet.2024.216877. PMID: 38615930.
Article
68. Gouw AM, Margulis K, Liu NS, Raman SJ, Mancuso A, Toal GG, Tong L, Mosley A, Hsieh AL, Sullivan DK, Stine ZE, Altman BJ, Schulze A, Dang CV, Zare RN, Felsher DW. 2019; The MYC oncogene cooperates with sterol-regulated element-binding protein to regulate lipogenesis essential for neoplastic growth. Cell Metab. 30:556–572.e5. DOI: 10.1016/j.cmet.2019.07.012. PMID: 31447321. PMCID: PMC6911354.
Article
69. Wu G, Qin S, Gu K, Zhou Y. 2024; PYCR2, induced by c-Myc, promotes the invasiveness and metastasis of breast cancer by activating AKT signalling pathway. Int J Biochem Cell Biol. 166:106506. DOI: 10.1016/j.biocel.2023.106506. PMID: 38101533.
Article
70. Yang L, Liu Y, Wang M, Qian Y, Dong X, Gu H, Wang H, Guo S, Hisamitsu T. 2016; Quercetin-induced apoptosis of HT-29 colon cancer cells via inhibition of the Akt-CSN6-Myc signaling axis. Mol Med Rep. 14:4559–4566. DOI: 10.3892/mmr.2016.5818. PMID: 27748879. PMCID: PMC5101998.
Article
71. Lee KC, Wu KL, Yen CK, Chen CN, Chang SF, Huang WS. 2021; 6-shogaol antagonizes the adipocyte-conditioned medium-initiated 5-fluorouracil resistance in human colorectal cancer cells through controlling the SREBP-1 level. Life (Basel). 11:1067. DOI: 10.3390/life11101067. PMID: 34685438. PMCID: PMC8537026.
Article
72. Wu C, Chen S, Wu Z, Xue J, Zhang W, Wang S, Wu S. Xindong Zhao. 2024; Chidamide and orelabrutinib synergistically induce cell cycle arrest and apoptosis in diffuse large B-cell lymphoma by regulating the PI3K/AKT/mTOR pathway. J Cancer Res Clin Oncol. 150:98. DOI: 10.1007/s00432-024-05615-7. PMID: 38381215. PMCID: PMC10881688.
Article
73. Lim JS, Kyung SY, Jeon Y, Kim IS, Kwak JH, Kim HS. 2023; Anticancer effects of the HDAC inhibitor, 3β,6β-dihydroxyurs-12-en-27-oic acid, in MCF7 breast cancer cells via the inhibition of Akt/mTOR pathways. Oncol Rep. 49:43. DOI: 10.3892/or.2023.8480. PMID: 36633143. PMCID: PMC9868892.
Article
74. Zheng Y, Yang X, Wang C, Zhang S, Wang Z, Li M, Wang Y, Wang X, Yang X. 2020; HDAC6, modulated by miR-206, promotes endometrial cancer progression through the PTEN/AKT/mTOR pathway. Sci Rep. 10:3576. Erratum in: Sci Rep. 2024;14:16144. DOI: 10.1038/s41598-020-60271-4. PMID: 32107418. PMCID: PMC7046652.
Article
75. Zhu T, Zhao D, Song Z, Yuan Z, Li C, Wang Y, Zhou X, Yin X, Hassan MF, Yang L. 2016; HDAC6 alleviates prion peptide-mediated neuronal death via modulating PI3K-Akt-mTOR pathway. Neurobiol Aging. 37:91–102. DOI: 10.1016/j.neurobiolaging.2015.09.021. PMID: 26507311.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr