1. Yan D, Yao R, Xie X, Fu X, Pei S, Wang Y, Xu D, Li N. 2024; The therapeutic efficacy of plasmapheresis for sepsis with multiple organ failure: a propensity score-matched analysis based on the MIMIC-IV database. Shock. 61:685–694. DOI:
10.1097/SHK.0000000000002254. PMID:
37988068.
Article
2. Balkrishna A, Sinha S, Kumar A, Arya V, Gautam AK, Valis M, Kuca K, Kumar D, Amarowicz R. 2023; Sepsis-mediated renal dysfunction: Pathophysiology, biomarkers and role of phytoconstituents in its management. Biomed Pharmacother. 165:115183. DOI:
10.1016/j.biopha.2023.115183. PMID:
37487442.
Article
3. Kim JS, Kim YJ, Kim YJ, Kim WY. 2023; Impact of developing dialysis-requiring acute kidney injury on long-term mortality in cancer patients with septic shock. Cancers (Basel). 15:3619. DOI:
10.3390/cancers15143619. PMID:
37509280. PMCID:
PMC10377237.
Article
4. Bai X, Ma Q, Li Q, Yin M, Xin Y, Zhen D, Wei C. 2023; Protective mechanisms of Leontopodium leontopodioides extracts on lipopolysaccharide-induced acute kidney injury viathe NF-κB/NLRP3 pathway. Chin J Nat Med. 21:47–57. DOI:
10.1016/S1875-5364(23)60384-X. PMID:
36641232.
Article
5. Qiu W, An S, Wang T, Li J, Yu B, Zeng Z, Chen Z, Lin B, Lin X, Gao Y. 2022; Melatonin suppresses ferroptosis via activation of the Nrf2/HO-1 signaling pathway in the mouse model of sepsis-induced acute kidney injury. Int Immunopharmacol. 112:109162. DOI:
10.1016/j.intimp.2022.109162. PMID:
36067654.
Article
6. Li J, Feng B, Yu P, Fu W, Wang W, Lin J, Qin Y, Li H, Chen T, Xu C, Tao L, Wu Z, Fu G. 2022; Oligomeric proanthocyanidins confer cold tolerance in rice through maintaining energy homeostasis. Antioxidants (Basel). 12:79. DOI:
10.3390/antiox12010079. PMID:
36670941. PMCID:
PMC9854629.
Article
7. Nattagh-Eshtivani E, Gheflati A, Barghchi H, Rahbarinejad P, Hachem K, Shalaby MN, Abdelbasset WK, Ranjbar G, Olegovich Bokov D, Rahimi P, Gholizadeh Navashenaq J, Pahlavani N. 2022; The role of Pycnogenol in the control of inflammation and oxidative stress in chronic diseases: molecular aspects. Phytother Res. 36:2352–2374. DOI:
10.1002/ptr.7454. PMID:
35583807.
Article
8. Nie F, Liu L, Cui J, Zhao Y, Zhang D, Zhou D, Wu J, Li B, Wang T, Li M, Yan M. 2023; Oligomeric proanthocyanidins: an updated review of their natural sources, synthesis, and potentials. Antioxidants (Basel). 12:1004. DOI:
10.3390/antiox12051004. PMID:
37237870. PMCID:
PMC10215713.
Article
9. Andersone A, Janceva S, Lauberte L, Ramata-Stunda A, Nikolajeva V, Zaharova N, Rieksts G, Telysheva G. 2023; Anti-inflammatory, anti-bacterial, and anti-fungal activity of oligomeric proanthocyanidins and extracts obtained from lignocellulosic agricultural waste. Molecules. 28:863. DOI:
10.3390/molecules28020863. PMID:
36677921. PMCID:
PMC9861313.
Article
10. Jamuna S, Ashokkumar R, Raja IS, Devaraj SN. 2023; Anti-atherogenic protection by oligomeric proanthocyanidins via regulating collagen crosslinking against CC diet-induced atherosclerosis in rats. Appl Biochem Biotechnol. 195:4881–4892. DOI:
10.1007/s12010-023-04487-w. PMID:
37097399.
Article
11. Ma X, Wang R, Yu S, Lu G, Yu Y, Jiang C. 2020; Anti-inflammatory activity of oligomeric proanthocyanidins via inhibition of NF-κB and MAPK in LPS-stimulated MAC-T cells. J Microbiol Biotechnol. 30:1458–1466. DOI:
10.4014/jmb.2006.06030. PMID:
32876071. PMCID:
PMC9728330.
Article
12. Wu Q, Zhao K, Chen Y, Ouyang Y, Feng Y, Li S, Zhang L, Feng N. 2021; Effect of lotus seedpod oligomeric procyanidins on AGEs formation in simulated gastrointestinal tract and cytotoxicity in Caco-2 cells. Food Funct. 12:3527–3538. DOI:
10.1039/D0FO03152F. PMID:
33900335.
Article
13. Miyake M, Ide K, Sasaki K, Matsukura Y, Shijima K, Fujiwara D. 2008; Oral administration of highly oligomeric procyanidins of Jatoba reduces the severity of collagen-induced arthritis. Biosci Biotechnol Biochem. 72:1781–1788. DOI:
10.1271/bbb.80074. PMID:
18603813.
Article
14. Li Y, Yu Q, Zhao W, Zhang J, Liu W, Huang M, Zeng X. 2017; Oligomeric proanthocyanidins attenuate airway inflammation in asthma by inhibiting dendritic cells maturation. Mol Immunol. 91:209–217. DOI:
10.1016/j.molimm.2017.09.012. PMID:
28963930.
Article
15. Wu Q, Li W, Zhao J, Sun W, Yang Q, Chen C, Xia P, Zhu J, Zhou Y, Huang G, Yong C, Zheng M, Zhou E, Gao K. 2021; Apigenin ameliorates doxorubicin-induced renal injury via inhibition of oxidative stress and inflammation. Biomed Pharmacother. 137:111308. Erratum in:
Biomed Pharmacother. 2024;176:116916. DOI:
10.1016/j.biopha.2024.116916. PMID:
38871545.
Article
16. Bi CF, Liu J, Hu XD, Yang LS, Zhang JF. 2023; Novel insights into the regulatory role of N6-methyladenosine methylation modified autophagy in sepsis. Aging (Albany NY). 15:15676–15700. DOI:
10.18632/aging.205312. PMID:
38112620. PMCID:
PMC10781468.
Article
17. Li M, Noordam R, Winter EM, van Meurs M, Bouma HR, Arbous MS, Rensen PCN, Kooijman S. 2024; Hydrocortisone-associated death and hospital length of stay in patients with sepsis: a retrospective cohort of large-scale clinical care data. Biomed Pharmacother. 170:115961. DOI:
10.1016/j.biopha.2023.115961. PMID:
38039761.
Article
18. Pandolfi F, Brun-Buisson C, Guillemot D, Watier L. 2023; Care pathways of sepsis survivors: sequelae, mortality and use of healthcare services in France, 2015-2018. Crit Care. 27:438. DOI:
10.1186/s13054-023-04726-w. PMID:
37950254. PMCID:
PMC10638811.
Article
19. Tackaert T, Van Moorter N, De Mey N, Demeyer I, De Decker K. 2023; The association between increasing fluid balance, acute kidney injury and mortality in patients with sepsis and septic shock: a retrospective single center audit. J Crit Care. 78:154367. DOI:
10.1016/j.jcrc.2023.154367. PMID:
37494863.
Article
20. Garcia B, Zarbock A, Bellomo R, Legrand M. 2023; The role of renin-angiotensin system in sepsis-associated acute kidney injury: mechanisms and therapeutic implications. Curr Opin Crit Care. 29:607–613. DOI:
10.1097/MCC.0000000000001092. PMID:
37861190.
Article
21. White KC, Serpa-Neto A, Hurford R, Clement P, Laupland KB, See E, McCullough J, White H, Shekar K, Tabah A, Ramanan M, Garrett P, Attokaran AG, Luke S, Senthuran S, McIlroy P, Bellomo R. Queensland Critical Care Research Network (QCCRN). 2023; Sepsis-associated acute kidney injury in the intensive care unit: incidence, patient characteristics, timing, trajectory, treatment, and associated outcomes. A multicenter, observational study. Intensive Care Med. 49:1079–1089. DOI:
10.1007/s00134-023-07138-0. PMID:
37432520. PMCID:
PMC10499944.
Article
22. Wang Y, Xi W, Zhang X, Bi X, Liu B, Zheng X, Chi X. 2023; CTSB promotes sepsis-induced acute kidney injury through activating mitochondrial apoptosis pathway. Front Immunol. 13:1053754. DOI:
10.3389/fimmu.2022.1053754. PMID:
36713420. PMCID:
PMC9880165.
Article
24. Zhi D, Zhang M, Lin J, Liu P, Duan M. 2021; GPR120 ameliorates apoptosis and inhibits the production of inflammatory cytokines in renal tubular epithelial cells. Inflammation. 44:493–505. DOI:
10.1007/s10753-020-01346-2. PMID:
33009637.
Article
25. Chen Y, Wei W, Fu J, Zhang T, Zhao J, Ma T. 2023; Forsythiaside A ameliorates sepsis-induced acute kidney injury via anti-inflammation and antiapoptotic effects by regulating endoplasmic reticulum stress. BMC Complement Med Ther. 23:35. DOI:
10.1186/s12906-023-03855-7. PMID:
36737765. PMCID:
PMC9896724.
Article
26. Kweon B, Kim DU, Oh JY, Bae GS, Park SJ. 2023; Guggulsterone protects against lipopolysaccharide-induced inflammation and lethal endotoxemia via heme oxygenase-1. Int Immunopharmacol. 124:111073. DOI:
10.1016/j.intimp.2023.111073. PMID:
37844468.
Article
27. Shen L, Zhou T, Wang J, Sang X, Lan L, Luo L, Yin Z. 2017; Daphnetin reduces endotoxin lethality in mice and decreases LPS-induced inflammation in Raw264.7 cells via suppressing JAK/STATs activation and ROS production. Inflamm Res. 66:579–589. DOI:
10.1007/s00011-017-1039-1. PMID:
28409189.
Article
28. Xu L, Cai J, Li C, Yang M, Duan T, Zhao Q, Xi Y, Sun L, He L, Tang C, Sun L. 2023; 4-Octyl itaconate attenuates LPS-induced acute kidney injury by activating Nrf2 and inhibiting STAT3 signaling. Mol Med. 29:58. DOI:
10.1186/s10020-023-00631-8. PMID:
37095432. PMCID:
PMC10127401.
Article
29. Tseng CY, Yu PR, Hsu CC, Lin HH, Chen JH. 2023; The effect of isovitexin on lipopolysaccharide-induced renal injury and inflammation by induction of protective autophagy. Food Chem Toxicol. 172:113581. DOI:
10.1016/j.fct.2022.113581. PMID:
36572206.
Article
30. Ban KY, Nam GY, Kim D, Oh YS, Jun HS. 2022; Prevention of LPS-induced acute kidney injury in mice by bavachin and its potential mechanisms. Antioxidants (Basel). 11:2096. DOI:
10.3390/antiox11112096. PMID:
36358467. PMCID:
PMC9686515.
Article
31. Yu Y, Wei X, Liu Y, Dong G, Hao C, Zhang J, Jiang J, Cheng J, Liu A, Chen S. 2022; Identification and quantification of oligomeric proanthocyanidins, alkaloids, and flavonoids in lotus seeds: a potentially rich source of bioactive compounds. Food Chem. 379:132124. DOI:
10.1016/j.foodchem.2022.132124. PMID:
35065486.
Article
32. Zhang W, Zhang J, Huang H. 2022; Exosomes from adipose-derived stem cells inhibit inflammation and oxidative stress in LPS-acute kidney injury. Exp Cell Res. 420:113332. DOI:
10.1016/j.yexcr.2022.113332. PMID:
36084668.
Article
33. Haugen E, Nath KA. 1999; The involvement of oxidative stress in the progression of renal injury. Blood Purif. 17:58–65. DOI:
10.1159/000014377. PMID:
10449863.
Article
34. Roberts RA, Laskin DL, Smith CV, Robertson FM, Allen EM, Doorn JA, Slikker W. 2009; Nitrative and oxidative stress in toxicology and disease. Toxicol Sci. 112:4–16. DOI:
10.1093/toxsci/kfp179. PMID:
19656995. PMCID:
PMC2769059.
Article
35. Zhang W, Chen H, Xu Z, Zhang X, Tan X, He N, Shen J, Dong J. 2023; Liensinine pretreatment reduces inflammation, oxidative stress, apoptosis, and autophagy to alleviate sepsis acute kidney injury. Int Immunopharmacol. 122:110563. DOI:
10.1016/j.intimp.2023.110563. PMID:
37392573.
Article
36. Zhang J, Wang C, Kang K, Liu H, Liu X, Jia X, Yu K. 2021; Loganin attenuates septic acute renal injury with the participation of AKT and Nrf2/HO-1 signaling pathways. Drug Des Devel Ther. 15:501–513. DOI:
10.2147/DDDT.S294266. PMID:
33603340. PMCID:
PMC7886113.
Article
37. Zhang B, Zeng M, Li B, Kan Y, Wang S, Cao B, Huang Y, Zheng X, Feng W. 2021; Arbutin attenuates LPS-induced acute kidney injury by inhibiting inflammation and apoptosis via the PI3K/Akt/Nrf2 pathway. Phytomedicine. 82:153466. DOI:
10.1016/j.phymed.2021.153466. PMID:
33494001.
Article
38. Zhang L, Li N, Zhang X, Wu H, Yu S. 2023; Hexavalent chromium caused DNA damage repair and apoptosis via the PI3K/AKT/FOXO1 pathway triggered by oxidative stress in the lung of rat. Ecotoxicol Environ Saf. 267:115622. DOI:
10.1016/j.ecoenv.2023.115622. PMID:
37890257.
Article
39. Mohamed AF, Safar MM, Zaki HF, Sayed HM. 2017; Telluric acid ameliorates endotoxemic kidney injury in mice: involvement of TLR4, Nrf2, and PI3K/Akt signaling pathways. Inflammation. 40:1742–1752. DOI:
10.1007/s10753-017-0617-2. PMID:
28685413.
Article
40. Hu W, Gao W, Miao J, Xu Z, Sun L. 2021; Alamandine, a derivative of angiotensin-(1-7), alleviates sepsis-associated renal inflammation and apoptosis by inhibiting the PI3K/Ak and MAPK pathways. Peptides. 146:170627. DOI:
10.1016/j.peptides.2021.170627. PMID:
34400214.
Article
41. Dong Y, Han X, Yang Y, Shi H. 2023; miR-506-3p induces autophagy of renal tubular epithelial cells in sepsis through targeting PI3K pathway. Aging (Albany NY). 15:4734–4745. DOI:
10.18632/aging.204759. PMID:
37285838. PMCID:
PMC10292869.
Article
42. Hong YA, Yang KJ, Jung SY, Chang YK, Park CW, Yang CW, Kim SY, Hwang HS. 2017; Paricalcitol attenuates lipopolysaccharide-induced inflammation and apoptosis in proximal tubular cells through the prostaglandin E
2 receptor EP4. Kidney Res Clin Pract. 36:145–158. DOI:
10.23876/j.krcp.2017.36.2.145. PMID:
28680822. PMCID:
PMC5491161.
Article
43. Ren Q, Guo F, Tao S, Huang R, Ma L, Fu P. 2020; Flavonoid fisetin alleviates kidney inflammation and apoptosis via inhibiting Src-mediated NF-κB p65 and MAPK signaling pathways in septic AKI mice. Biomed Pharmacother. 122:109772. DOI:
10.1016/j.biopha.2019.109772. PMID:
31918290.
Article
44. Ma X, Guo Z, Zhao W, Chen L. 2023; Sweroside plays a role in mitigating high glucose-induced damage in human renal tubular epithelial HK-2 cells by regulating the SIRT1/NF-κB signaling pathway. Korean J Physiol Pharmacol. 27:533–540. DOI:
10.4196/kjpp.2023.27.6.533. PMID:
37884285. PMCID:
PMC10613573.
Article
45. Ma J, Luo Y, Liu Y, Chen C, Chen A, Liang L, Wang W, Song Y. 2023; Exosome-mediated lnc-ABCA12-3 promotes proliferation and glycolysis but inhibits apoptosis by regulating the toll-like receptor 4/nuclear factor kappa-B signaling pathway in esophageal squamous cell carcinoma. Korean J Physiol Pharmacol. 27:61–73. DOI:
10.4196/kjpp.2023.27.1.61. PMID:
36575934. PMCID:
PMC9806635.
Article
46. Temiz-Resitoglu M, Kucukkavruk SP, Guden DS, Cecen P, Sari AN, Tunctan B, Gorur A, Tamer-Gumus L, Buharalioglu CK, Malik KU, Sahan-Firat S. 2017; Activation of mTOR/IκB-α/NF-κB pathway contributes to LPS-induced hypotension and inflammation in rats. Eur J Pharmacol. 802:7–19. DOI:
10.1016/j.ejphar.2017.02.034. PMID:
28228357.
Article
47. Jin YH, Li ZY, Jiang XQ, Wu F, Li ZT, Chen H, Xi D, Zhang YY, Chen ZQ. 2020; Irisin alleviates renal injury caused by sepsis via the NF-κB signaling pathway. Eur Rev Med Pharmacol Sci. 24:6470–6476.
48. Zhao YL, Zhang L, Yang YY, Tang Y, Zhou JJ, Feng YY, Cui TL, Liu F, Fu P. 2016; Resolvin D1 protects lipopolysaccharide-induced acute kidney injury by down-regulating nuclear factor-kappa B signal and inhibiting apoptosis. Chin Med J (Engl). 129:1100–1107. DOI:
10.4103/0366-6999.180517. PMID:
27098797. PMCID:
PMC4852679.
Article