1. Rim YA, Nam Y, Ju JH. 2020; The role of chondrocyte hypertrophy and senescence in osteoarthritis initiation and progression. Int J Mol Sci. 21:2358. DOI:
10.3390/ijms21072358. PMID:
32235300. PMCID:
PMC7177949.
2. O'Brien MS, McDougall JJ. 2019; Age and frailty as risk factors for the development of osteoarthritis. Mech Ageing Dev. 180:21–28. DOI:
10.1016/j.mad.2019.03.003. PMID:
30898635.
3. Jang S, Lee K, Ju JH. 2021; Recent updates of diagnosis, pathophysiology, and treatment on osteoarthritis of the knee. Int J Mol Sci. 22:2619. DOI:
10.3390/ijms22052619. PMID:
33807695. PMCID:
PMC7961389.
4. Enomoto M, Mantyh PW, Murrell J, Innes JF, Lascelles BDX. 2019; Anti-nerve growth factor monoclonal antibodies for the control of pain in dogs and cats. Vet Rec. 184:23. DOI:
10.1136/vr.104590. PMID:
30368458. PMCID:
PMC6326241.
5. Barker PA, Mantyh P, Arendt-Nielsen L, Viktrup L, Tive L. 2020; Nerve growth factor signaling and its contribution to pain. J Pain Res. 13:1223–1241. DOI:
10.2147/JPR.S247472. PMID:
32547184. PMCID:
PMC7266393.
6. Eitner A, Hofmann GO, Schaible HG. 2017; Mechanisms of osteoarthritic pain. Studies in humans and experimental models. Front Mol Neurosci. 10:349. DOI:
10.3389/fnmol.2017.00349. PMID:
29163027. PMCID:
PMC5675866.
7. Wild KD, Bian D, Zhu D, et al. 2007; Antibodies to nerve growth factor reverse established tactile allodynia in rodent models of neuropathic pain without tolerance. J Pharmacol Exp Ther. 322:282–287. DOI:
10.1124/jpet.106.116236. PMID:
17431136.
8. Neogi T, Hunter DJ, Churchill M, et al. 2022; Observed efficacy and clinically important improvements in participants with osteoarthritis treated with subcutaneous tanezumab: results from a 56-week randomized NSAID-controlled study. Arthritis Res Ther. 24:78. DOI:
10.1186/s13075-022-02759-0. PMID:
35351194. PMCID:
PMC8966257.
9. Ugolini G, Marinelli S, Covaceuszach S, Cattaneo A, Pavone F. 2007; The function neutralizing anti-TrkA antibody MNAC13 reduces inflammatory and neuropathic pain. Proc Natl Acad Sci U S A. 104:2985–2990. DOI:
10.1073/pnas.0611253104. PMID:
17301229. PMCID:
PMC1815293.
10. Berenbaum F, Blanco FJ, Guermazi A, et al. 2020; Subcutaneous tanezumab for osteoarthritis of the hip or knee: efficacy and safety results from a 24-week randomised phase III study with a 24-week follow-up period. Ann Rheum Dis. 79:800–810. DOI:
10.1136/annrheumdis-2019-216296. PMID:
32234715. PMCID:
PMC7286052.
11. Robinson WH, Lepus CM, Wang Q, et al. 2016; Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 12:580–592. DOI:
10.1038/nrrheum.2016.136. PMID:
27539668. PMCID:
PMC5500215.
12. Chawla S, Mainardi A, Majumder N, et al. 2022; Chondrocyte hypertrophy in osteoarthritis: mechanistic studies and models for the identification of new therapeutic strategies. Cells. 11:4034. DOI:
10.3390/cells11244034. PMID:
36552796. PMCID:
PMC9777397.
13. Dreier R. 2010; Hypertrophic differentiation of chondrocytes in osteoarthritis: the developmental aspect of degenerative joint disorders. Arthritis Res Ther. 12:216. DOI:
10.1186/ar3117. PMID:
20959023. PMCID:
PMC2990991.
14. Jiang Y, Hu C, Yu S, et al. 2015; Cartilage stem/progenitor cells are activated in osteoarthritis via interleukin-1β/nerve growth factor signaling. Arthritis Res Ther. 17:327. DOI:
10.1186/s13075-015-0840-x. PMID:
26577823. PMCID:
PMC4650403.
15. Park N, Rim YA, Jung H, Nam Y, Ju JH. 2022; Lupus heart disease modeling with combination of induced pluripotent stem cell-derived cardiomyocytes and lupus patient serum. Int J Stem Cells. 15:233–246. DOI:
10.15283/ijsc21158. PMID:
34966002. PMCID:
PMC9396017.
16. Mo H, Kim J, Kim JY, et al. 2023; Intranasal administration of induced pluripotent stem cell-derived cortical neural stem cell-secretome as a treatment option for Alzheimer's disease. Transl Neurodegener. 12:50. DOI:
10.1186/s40035-023-00384-8. PMID:
37946307. PMCID:
PMC10634159.
17. Sayegh S, El Atat O, Diallo K, et al. 2019; Rheumatoid synovial fluids regulate the immunomodulatory potential of adipose-derived mesenchymal stem cells through a TNF/NF-κB-dependent mechanism. Front Immunol. 10:1482. DOI:
10.3389/fimmu.2019.01482. PMID:
31316519. PMCID:
PMC6611153.
18. Nam Y, Rim YA, Jung SM, Ju JH. 2017; Cord blood cell-derived iPSCs as a new candidate for chondrogenic differentiation and cartilage regeneration. Stem Cell Res Ther. 8:16. DOI:
10.1186/s13287-017-0477-6. PMID:
28129782. PMCID:
PMC5273802.
19. Pecchi E, Priam S, Gosset M, et al. 2014; Induction of nerve growth factor expression and release by mechanical and inflammatory stimuli in chondrocytes: possible involvement in osteoarthritis pain. Arthritis Res Ther. 16:R16. DOI:
10.1186/ar4443. PMID:
24438745. PMCID:
PMC3978639.
20. Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. 2016; Osteoarthritis. Nat Rev Dis Primers. 2:16072. DOI:
10.1038/nrdp.2016.72. PMID:
27734845.
21. Berenbaum F, Langford R, Perrot S, et al. 2021; Subcutaneous tanezumab for osteoarthritis: is the early improvement in pain and function meaningful and sustained? Eur J Pain. 25:1525–1539. DOI:
10.1002/ejp.1764. PMID:
33728717. PMCID:
PMC8360021.
22. Mapp PI, Walsh DA. 2012; Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nat Rev Rheumatol. 8:390–398. DOI:
10.1038/nrrheum.2012.80. PMID:
22641138.
23. Segarra-Queralt M, Neidlin M, Tio L, et al. 2022; Regulatory network-based model to simulate the biochemical regulation of chondrocytes in healthy and osteoarthritic environments. Sci Rep. 12:3856. DOI:
10.1038/s41598-022-07776-2. PMID:
35264634. PMCID:
PMC8907219.
24. Han H, Kim Y, Mo H, et al. 2022; Preferential stimulation of melanocytes by M2 macrophages to produce melanin through vascular endothelial growth factor. Sci Rep. 12:6416. DOI:
10.1038/s41598-022-08163-7. PMID:
35440608. PMCID:
PMC9019043.
25. Moraes-Vieira PM, Yore MM, Dwyer PM, Syed I, Aryal P, Kahn BB. 2014; RBP4 activates antigen-presenting cells, leading to adipose tissue inflammation and systemic insulin resistance. Cell Metab. 19:512–526. DOI:
10.1016/j.cmet.2014.01.018. PMID:
24606904. PMCID:
PMC4078000.
26. Wei Z, Li HH. 2015; IGFBP-3 may trigger osteoarthritis by inducing apoptosis of chondrocytes through Nur77 translocation. Int J Clin Exp Pathol. 8:15599–610.
27. Furman BD, Kent CL, Huebner JL, et al. 2018; CXCL10 is upregulated in synovium and cartilage following articular fracture. J Orthop Res. 36:1220–1227. DOI:
10.1002/jor.23735. PMID:
28906016. PMCID:
PMC5851826.
28. Abed E, Bouvard B, Martineau X, Jouzeau JY, Reboul P, Lajeunesse D. 2015; Elevated hepatocyte growth factor levels in osteoarthritis osteoblasts contribute to their altered response to bone morphogenetic protein-2 and reduced mineralization capacity. Bone. 75:111–119. DOI:
10.1016/j.bone.2015.02.001. PMID:
25667190.
30. Tomita T, Nakase T, Kaneko M, et al. 2002; Expression of extracellular matrix metalloproteinase inducer and enhancement of the production of matrix metalloproteinases in rheumatoid arthritis. Arthritis Rheum. 46:373–378. DOI:
10.1002/art.10050. PMID:
11840439.
31. Luo W, Lin Z, Yuan Y, Wu Z, Zhong W, Liu Q. 2022; Osteopontin (OPN) alleviates the progression of osteoarthritis by promoting the anabolism of chondrocytes. Genes Dis. 10:1714–1725. DOI:
10.1016/j.gendis.2022.08.010. PMID:
37397527. PMCID:
PMC10311054.
32. Mimpen JY, Baldwin MJ, Cribbs AP, et al. 2021; Interleukin-17A causes osteoarthritis-like transcriptional changes in human osteoarthritis-derived chondrocytes and synovial fibroblasts
in vitro. Front Immunol. 12:676173. DOI:
10.3389/fimmu.2021.676173. PMID:
34054865. PMCID:
PMC8153485.
33. Choi SH, Lee K, Han H, et al. 2023; Prochondrogenic effect of decellularized extracellular matrix secreted from human induced pluripotent stem cell-derived chondrocytes. Acta Biomater. 167:234–248. DOI:
10.1016/j.actbio.2023.05.052. PMID:
37295627.
34. Guidotti S, Minguzzi M, Platano D, et al. 2017; Glycogen synthase kinase-3β inhibition links mitochondrial dysfunction, extracellular matrix remodelling and terminal differentiation in chondrocytes. Sci Rep. 7:12059. DOI:
10.1038/s41598-017-12129-5. PMID:
28935982. PMCID:
PMC5608843.
35. Wang X, Cornelis FMF, Lories RJ, Monteagudo S. 2019; Exostosin-1 enhances canonical Wnt signaling activity during chondrogenic differentiation. Osteoarthritis Cartilage. 27:1702–1710. DOI:
10.1016/j.joca.2019.07.007. PMID:
31330188.
36. Boland GM, Perkins G, Hall DJ, Tuan RS. 2004; Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. J Cell Biochem. 93:1210–1230. DOI:
10.1002/jcb.20284. PMID:
15486964.
37. Choi SH, Kim H, Lee HG, et al. 2017; Dickkopf-1 induces angiogenesis via VEGF receptor 2 regulation independent of the Wnt signaling pathway. Oncotarget. 8:58974–58984. DOI:
10.18632/oncotarget.19769. PMID:
28938611. PMCID:
PMC5601707.
38. Akoumianakis I, Polkinghorne M, Antoniades C. 2022; Non-canonical WNT signalling in cardiovascular disease: mechanisms and therapeutic implications. Nat Rev Cardiol. 19:783–797. DOI:
10.1038/s41569-022-00718-5. PMID:
35697779. PMCID:
PMC9191761.
39. Liu Z, Suh JS, Deng P, et al. 2022; Epigenetic regulation of NGF-mediated osteogenic differentiation in human dental mesenchymal stem cells. Stem Cells. 40:818–830. DOI:
10.1093/stmcls/sxac042. PMID:
35728620. PMCID:
PMC9512103.