Korean J Physiol Pharmacol.  2025 Jan;29(1):117-126. 10.4196/kjpp.24.284.

Rosuvastatin activates autophagy via inhibition of the Akt/mTOR axis in vascular smooth muscle cells

Affiliations
  • 1College of Pharmacy, Woosuk University, Wanju 55338, Korea
  • 2Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
  • 3College of Microbiology, Chungbuk National University, Cheongju 28644, Korea
  • 4College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju 55338, Korea

Abstract

The proliferation and migration of vascular smooth muscle cells (VSMCs) are key contributors to the development of atherosclerosis and restenosis. We investigated the impact of rosuvastatin (RSV) on platelet-derived growth factor (PDGF)-BB-induced proliferation and migration of VSMCs, with a focus on the Akt/mTORautophagy signaling pathways. The cytotoxicity of RSV was assessed using MTT and annexin V staining, while the proliferation and migration capabilities of PDGF-BBinduced VSMCs were evaluated using MTT and cell migration assays. Confocal microscopy was employed to examine autophagic cell images, and protein expressions were analyzed via Western blotting. Our key findings revealed that RSV inhibited PDGF-BB-induced proliferation and migration of VSMCs, significantly reducing the expression of proliferating cell nuclear antigen and matrix metalloproteinase-2, which are crucial for these processes. RSV also enhanced autophagy in PDGF-BBstimulated cells by inducing the maturation of microtubule-associated protein light chain 3 and increasing the expression of Beclin-1, autophagy related (Atg)3, Atg5, and Atg7. The regulatory effects of RSV on PDGF-BB-induced autophagy, proliferation, and migration were associated with the suppression of the Akt/mTOR signaling pathway. These findings suggest that RSV may have potential therapeutic benefits in preventing and treating vascular diseases by targeting the Akt/mTOR pathway and inducing autophagy.

Keyword

Autophagy; Mammalian target of rapamycin; Protein kinase B; Rosuvastatin calcium; Vascular smooth muscle cell

Figure

  • Fig. 1 Effects of RSV on the cell viability and apoptosis in VSMCs. (A) Cell viability measuring by MTT in VSMCs. The cells were treated with RSV (10, 40 and 100 μM) or digitonin (100 μg/ml) for 48 h. A digitonin was used as the positive control (PC). (B) Examination of apoptosis using Annexin V staining in VSMCs. The cells were treated with RSV (10 and 40 μM) or/and PDGF-BB (25 ng/ml) for 48 h. The percentage of indicated each cell population were determined and quantified. Data were analyzed using mean ± SEM. All experimental techniques are described in the Methods section. RSV, rosuvastatin; VSMCs, vascular smooth muscle cells; MTT, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PDGF, platelet-derived growth factor. ***p < 0.001; ****p < 0.0001. n = 3 per group.

  • Fig. 2 RSV inhibits PDGF-induced VSMCs proliferation and migration. (A) MTT assay for PDGF-BB-treated VSMCs proliferation. The cells were treated with RSV (10, 20, 40 μM), rapamycin (Ra, 100 nM), and PDGF-BB (25 ng/ml) for 48 h. ****p < 0.0001 vs. Con group, #p < 0.05, ####p < 0.0001 vs. PDGF-BB-treated group. (B) Western blot analysis for the protein expression of PCNA in PDGF-BB-treated VSMCs. The cells were treated with RSV (10, 20 and 40 μM) and PDGF-BB (25 ng/ml) for 48 h. ****p < 0.0001 vs. Con group, ##p < 0.01, ###p < 0.001, ####p < 0.0001 vs. PDGF-BB-treated group. (C) Representative images for RSV and PDGF-BB-treated VSMCs migration. The cells were treated with RSV (10, 20 and 40 μM) and PDGF-BB (25 ng/ml) for 48 h. ****p < 0.0001 vs. Con group, ##p < 0.01, ###p < 0.001 vs. PDGF-BB-treated group. Scale bar: 100 μm. (D) Western blot analysis for the protein expression of MMP-2. The cells were treated with RSV (10, 20 and 40 μM) and PDGF-BB (25 ng/ml) for 48 h. ****p < 0.0001 vs. Con group, ###p < 0.001, ####p < 0.0001 vs. PDGF-BB-treated group. Protein expressions were normalized to β‐actin. Data were analyzed using mean ± SEM. All experimental techniques are described in the Methods section. n = 3 per group. RSV, rosuvastatin; PDGF, platelet-derived growth factor; VSMCs, vascular smooth muscle cells; MTT, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PCNA, proliferating cell nuclear antigen; MMP-2, matrix metalloproteinase-2.

  • Fig. 3 RSV activates autophagic flux in PDGF-BB-stimulated in VSMCs. Western blot analysis for LC3-I/II expression in (A) basal and (B) PDGF-BB-stimulated VSMCs. The cells were treated with RSV (10, 20 and 40 μM) or/and PDGF-BB (25 ng/ml) for 48 h. *p < 0.05 vs. No PDGF-BB-treated group, ##p < 0.01 and ####p < 0.0001 vs. PDGF-BB-treated group. (C) Representative immunostaining image for LC3 and PCNA on RSV and PDGF-BB-stimulated VSMCs. The cells were treated with RSV (40 μM) and PDGF-BB (25 ng/ml) for 48 h. Blue, DAPI; Green, LC3; Red, PCNA. Scale bar: 20 μm. (D) qPCR analysis for Beclin-1, Atg3, Atg5, and Atg7 mRNA expression. The cells were treated with RSV (40 μM) or/and PDGF-BB (25 ng/ml) for 48 h. *p < 0.05, ***p < 0.001, ****p < 0.0001. Data were analyzed using mean ± SEM. All experimental techniques are described in the Methods section. n = 3 per group. RSV, rosuvastatin; PDGF, platelet-derived growth factor; VSMCs, vascular smooth muscle cells; LC3, light chain 3; PCNA, proliferating cell nuclear antigen; DAPI, 4’,6-diamidino-2-phenylindole; qPCR, quantitative polymerase chain reaction; n.s., no significant.

  • Fig. 4 RSV inhibits PDGF-BB-induced VSMCs proliferation and migration through Akt and mTOR-mediated autophagy activation. (A) Western blot analysis for Akt and mTOR phosphorylation. The cells were incubated with rapamycin (100 nM, mTOR inhibitor) for 4 h, and added RSV (40 μM) and PDGF-BB (25 ng/ml) for 48 h. (B) Measurement of LC3-I/II expression using specific signal inhibitors in PDGF-BB-stimulated VSMCs. The cells were incubated with RSV (40 μM), U0126 (10 μM, ERK1/2 inhibitor), MK-2206 (10 μM, Akt inhibitor), and added PDGF-BB for 48 h. (C) MTT assay for RSV, MK-2206, and PDGF-BB-stimulated VSMCs proliferation. The cells were incubated with RSV (40 μM), MK-2206 (10 μM, Akt inhibitor), and PDGF-BB (25 ng/ml) for 48 h. ****p < 0.0001 vs. Con group, ####p < 0.0001 vs. PDGF-BB-treated group. (D) Representative images for PDGF-BB-treated VSMCs migration. The cells were incubated with RSV (40 μM), MK-2206 (10 μM, Akt inhibitor) and PDGF-BB (25 ng/ml) for 48 h. ****p < 0.0001 vs. Con group, ####p < 0.0001 vs. PDGF-BB-treated group. Scale bar: 100 μm. (E) Western blot analysis for MMP-2 and PCNA expression. The cells were incubated with RSV (40 μM), MK-2206, and PDGF-BB (25 ng/ml) for 48 h. Data were analyzed using mean ± SEM. All experimental techniques are described in the Methods section. n = 3 per group. RSV, rosuvastatin; PDGF, platelet-derived growth factor; VSMCs, vascular smooth muscle cells; mTOR, mammalian target of rapamycin; MTT, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PCNA, proliferating cell nuclear antigen.


Reference

1. Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, Olaetxea JR, Alloza I, Vandenbroeck K, Benito-Vicente A, Martín C. 2022; Pathophysiology of atherosclerosis. Int J Mol Sci. 23:3346. DOI: 10.3390/ijms23063346. PMID: 35328769. PMCID: PMC8954705.
Article
2. Ding H, Pan Q, Qian L, Hu C. 2022; Differentially expressed mRNAs and their upstream miR-491-5p in patients with coronary atherosclerosis as well as the function of miR-491-5p in vascular smooth muscle cells. Korean J Physiol Pharmacol. 26:183–193. DOI: 10.4196/kjpp.2022.26.3.183. PMID: 35477546. PMCID: PMC9046892.
Article
3. Louis SF, Zahradka P. 2010; Vascular smooth muscle cell motility: From migration to invasion. Exp Clin Cardiol. 15:e75–85.
4. Hu Y, Zhang C, Fan Y, Zhang Y, Wang Y, Wang C. 2022; Lactate promotes vascular smooth muscle cell switch to a synthetic phenotype by inhibiting miR-23b expression. Korean J Physiol Pharmacol. 26:519–530. DOI: 10.4196/kjpp.2022.26.6.519. PMID: 36302626. PMCID: PMC9614396.
Article
5. Marx SO, Totary-Jain H, Marks AR. 2011; Vascular smooth muscle cell proliferation in restenosis. Circ Cardiovasc Interv. 4:104–111. DOI: 10.1161/CIRCINTERVENTIONS.110.957332. PMID: 21325199. PMCID: PMC3816546.
Article
6. Lee JJ, Lee JH, Yim NH, Han JH, Ma JY. 2017; Application of galangin, an active component of Alpinia officinarum Hance (Zingiberaceae), for use in drug-eluting stents. Sci Rep. 7:8207. DOI: 10.1038/s41598-017-08410-2. PMID: 28811550. PMCID: PMC5557749.
Article
7. Heldin CH, Westermark B. 1999; Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev. 79:1283–1316. DOI: 10.1152/physrev.1999.79.4.1283. PMID: 10508235.
Article
8. Kim Y, Lee JJ, Lee SG, Jung SH, Han JH, Yang SY, Yun E, Song GY, Myung CS. 2013; 5,8-dimethoxy-2-nonylamino-naphthalene-1,4-dione inhibits vascular smooth muscle cell proliferation by blocking autophosphorylation of PDGF-receptor β. Korean J Physiol Pharmacol. 17:203–208. DOI: 10.4196/kjpp.2013.17.3.203. PMID: 23776396. PMCID: PMC3682080.
Article
9. Betsholtz C, Karlsson L, Lindahl P. 2001; Developmental roles of platelet-derived growth factors. Bioessays. 23:494–507. DOI: 10.1002/bies.1069. PMID: 11385629.
Article
10. Jo JH, Park HS, Lee DH, Han JH, Heo KS, Myung CS. 2021; Rosuvastatin inhibits the apoptosis of platelet-derived growth factor-stimulated vascular smooth muscle cells by inhibiting p38 via autophagy. J Pharmacol Exp Ther. 378:10–19. DOI: 10.1124/jpet.121.000539. PMID: 33846234.
Article
11. Han JH, Kim MT, Myung CS. 2022; Cytokine-induced apoptosis inhibitor 1 (CIAPIN1): can it be eligible to be a novel target for the treatment of atherosclerosis? Cardiometab Syndr J. 2:139–141. DOI: 10.51789/cmsj.2022.2.e17.
Article
12. Shan D, Qu P, Zhong C, He L, Zhang Q, Zhong G, Hu W, Feng Y, Yang S, Yang XF, Yu J. 2022; Anemoside B4 inhibits vascular smooth muscle cell proliferation, migration, and neointimal hyperplasia. Front Cardiovasc Med. 9:907490. DOI: 10.3389/fcvm.2022.907490. PMID: 35620517. PMCID: PMC9127303.
Article
13. Hwang AR, Lee HJ, Kim S, Park SH, Woo CH. 2023; Inhibition of p90RSK ameliorates PDGF-BB-mediated phenotypic change of vascular smooth muscle cell and subsequent hyperplasia of neointima. Int J Mol Sci. 24:8094. DOI: 10.3390/ijms24098094. PMID: 37175802. PMCID: PMC10179136.
Article
14. Qiu L, Hu L, Liu X, Li W, Zhang X, Xia H, Zhang C. 2021; Physalin B inhibits PDGF-BB-induced VSMC proliferation, migration and phenotypic transformation by activating the Nrf2 pathway. Food Funct. 12:10950–10966. DOI: 10.1039/D1FO01926K. PMID: 34647944.
Article
15. Parzych KR, Klionsky DJ. 2014; An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal. 20:460–473. DOI: 10.1089/ars.2013.5371. PMID: 23725295. PMCID: PMC3894687.
Article
16. Li Y, Wu Z, Hu J, Liu G, Hu H, Ouyang F, Yang J. 2023; Hydrogen sulfide ameliorates abdominal aorta coarctation-induced myocardial fibrosis by inhibiting pyroptosis through regulating eukaryotic translation initiation factor 2α phosphorylation and activating PI3K/AKT1 pathway. Korean J Physiol Pharmacol. 27:345–356. DOI: 10.4196/kjpp.2023.27.4.345. PMID: 37386832. PMCID: PMC10316187.
Article
17. Tai S, Hu XQ, Peng DQ, Zhou SH, Zheng XL. 2016; The roles of autophagy in vascular smooth muscle cells. Int J Cardiol. 211:1–6. DOI: 10.1016/j.ijcard.2016.02.128. PMID: 26954728.
Article
18. Grootaert MOJ, Moulis M, Roth L, Martinet W, Vindis C, Bennett MR, De Meyer GRY. 2018; Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc Res. 114:622–634. DOI: 10.1093/cvr/cvy007. PMID: 29360955.
Article
19. Salabei JK, Hill BG. 2013; Implications of autophagy for vascular smooth muscle cell function and plasticity. Free Radic Biol Med. 65:693–703. DOI: 10.1016/j.freeradbiomed.2013.08.003. PMID: 23938401. PMCID: PMC3859773.
Article
20. Kang R, Zeh HJ, Lotze MT, Tang D. 2011; The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 18:571–580. DOI: 10.1038/cdd.2010.191. PMID: 21311563. PMCID: PMC3131912.
Article
21. Chilbert MR, VanDuyn D, Salah S, Clark CM, Ma Q. 2022; Combination therapy of ezetimibe and rosuvastatin for dyslipidemia: current insights. Drug Des Devel Ther. 16:2177–2186. DOI: 10.2147/DDDT.S332352. PMID: 35832642. PMCID: PMC9273150.
Article
22. Ryu JY, Jang EH, Lee J, Kim JH, Youn YN. 2024; Prevention of neointimal hyperplasia after coronary artery bypass graft via local delivery of sirolimus and rosuvastatin: network pharmacology and in vivo validation. J Transl Med. 22:166. DOI: 10.1186/s12967-024-04875-8. PMID: 38365767. PMCID: PMC10874014.
Article
23. Kiyan J, Kusch A, Tkachuk S, Krämer J, Haller H, Dietz R, Smith G, Dumler I. 2007; Rosuvastatin regulates vascular smooth muscle cell phenotypic modulation in vascular remodeling: role for the urokinase receptor. Atherosclerosis. 195:254–261. https://pubmed.ncbi.nlm.nih.gov/17275828/. DOI: 10.1016/j.atherosclerosis.2006.12.030. PMID: 17275828.
Article
24. Suh JS, Lee SH, Fouladian Z, Lee JY, Kim T, Kang MK, Lusis AJ, Boström KI, Kim RH, Park NH. 2020; Rosuvastatin prevents the exacerbation of atherosclerosis in ligature-induced periodontal disease mouse model. Sci Rep. 10:6383. DOI: 10.1038/s41598-020-63350-8. PMID: 32286430. PMCID: PMC7156392.
Article
25. Park HS, Han JH, Jung SH, Lee DH, Heo KS, Myung CS. 2018; Anti-apoptotic effects of autophagy via ROS regulation in microtubule-targeted and PDGF-stimulated vascular smooth muscle cells. Korean J Physiol Pharmacol. 22:349–360. DOI: 10.4196/kjpp.2018.22.3.349. PMID: 29719457. PMCID: PMC5928348.
Article
26. Gao S, Xu L, Zhang Y, Yu Q, Li J, Guan H, Wang X, Cheng D, Liu Y, Bai L, Wang R, Fan J, Zhao S, Liu E. 2018; Salusin-α inhibits proliferation and migration of vascular smooth muscle cell via Akt/mTOR signaling. Cell Physiol Biochem. 50:1740–1753. DOI: 10.1159/000494792. PMID: 30384378.
Article
27. Han JH, Heo KS, Myung CS. 2021; Cytokine-induced apoptosis inhibitor 1 (CIAPIN1) accelerates vascular remodelling via p53 and JAK2-STAT3 regulation in vascular smooth muscle cells. Br J Pharmacol. 178:4533–4551. DOI: 10.1111/bph.15631. PMID: 34289085.
Article
28. Park HS, Jo E, Han JH, Jung SH, Lee DH, Park I, Heo KS, Na M, Myung CS. 2019; Hepatoprotective effects of an Acer tegmentosum Maxim extract through antioxidant activity and the regulation of autophagy. J Ethnopharmacol. 239:111912. DOI: 10.1016/j.jep.2019.111912. PMID: 31029758.
Article
29. Eid SY, El-Readi MZ, Wink M. 2012; Digitonin synergistically enhances the cytotoxicity of plant secondary metabolites in cancer cells. Phytomedicine. 19:1307–1314. DOI: 10.1016/j.phymed.2012.09.002. PMID: 23062361.
Article
30. Han JH, Park HS, Lee DH, Jo JH, Heo KS, Myung CS. 2021; Regulation of autophagy by controlling Erk1/2 and mTOR for platelet-derived growth factor-BB-mediated vascular smooth muscle cell phenotype shift. Life Sci. 267:118978. DOI: 10.1016/j.lfs.2020.118978. PMID: 33412209.
Article
31. Park HS, Quan KT, Han JH, Jung SH, Lee DH, Jo E, Lim TW, Heo KS, Na M, Myung CS. 2017; Rubiarbonone C inhibits platelet-derived growth factor-induced proliferation and migration of vascular smooth muscle cells through the focal adhesion kinase, MAPK and STAT3 Tyr705 signalling pathways. Br J Pharmacol. 174:4140–4154. DOI: 10.1111/bph.13986. PMID: 28832962. PMCID: PMC5660001.
Article
32. Kim Y, Han JH, Yun E, Jung SH, Lee JJ, Song GY, Myung CS. 2014; Inhibitory effect of a novel naphthoquinone derivative on proliferation of vascular smooth muscle cells through suppression of platelet-derived growth factor receptor β tyrosine kinase. Eur J Pharmacol. 733:81–89. DOI: 10.1016/j.ejphar.2014.03.037. PMID: 24695376.
Article
33. Semlali A, Papadakos S, Contant C, Zouaoui I, Rouabhia M. 2022; Rapamycin inhibits oral cancer cell growth by promoting oxidative stress and suppressing ERK1/2, NF-κB and beta-catenin pathways. Front Oncol. 12:873447. DOI: 10.3389/fonc.2022.873447. PMID: 36185289. PMCID: PMC9520465.
Article
34. Boehm EM, Gildenberg MS, Washington MT. 2016; The many roles of PCNA in eukaryotic DNA replication. Enzymes. 39:231–254. DOI: 10.1016/bs.enz.2016.03.003. PMID: 27241932. PMCID: PMC4890617.
Article
35. Han JH, Kim Y, Jung SH, Lee JJ, Park HS, Song GY, Cuong NM, Kim YH, Myung CS. 2015; Murrayafoline A induces a G0/G1-phase arrest in platelet-derived growth factor-stimulated vascular smooth muscle cells. Korean J Physiol Pharmacol. 19:421–426. DOI: 10.4196/kjpp.2015.19.5.421. PMID: 26330754. PMCID: PMC4553401.
Article
36. Han JH, Lee SG, Jung SH, Lee JJ, Park HS, Kim YH, Myung CS. 2015; Sesamin inhibits PDGF-mediated proliferation of vascular smooth muscle cells by upregulating p21 and p27. J Agric Food Chem. 63:7317–7325. DOI: 10.1021/acs.jafc.5b03374. PMID: 26244686.
Article
37. Lee JJ, Lee JH, Cho WK, Han JH, Ma JY. 2016; Herbal composition of Cinnamomum cassia, Pinus densiflora, Curcuma longa and Glycyrrhiza glabra prevents atherosclerosis by upregulating p27 (Kip1) expression. BMC Complement Altern Med. 16:253. DOI: 10.1186/s12906-016-1224-8. PMID: 27465365. PMCID: PMC4964310.
Article
38. Fan WH, Karnovsky MJ. 2002; Increased MMP-2 expression in connective tissue growth factor over-expression vascular smooth muscle cells. J Biol Chem. 277:9800–9805. DOI: 10.1074/jbc.M111213200. PMID: 11773059.
Article
39. Gatica D, Chiong M, Lavandero S, Klionsky DJ. 2015; Molecular mechanisms of autophagy in the cardiovascular system. Circ Res. 116:456–467. Erratum. DOI: 10.1161/CIRCRESAHA.114.303788. PMID: 25634969. PMCID: PMC4313620.
Article
40. Desantis V, Saltarella I, Lamanuzzi A, Mariggiò MA, Racanelli V, Vacca A, Frassanito MA. 2018; Autophagy: a new mechanism of prosurvival and drug resistance in multiple myeloma. Transl Oncol. 11:1350–1357. DOI: 10.1016/j.tranon.2018.08.014. PMID: 30196237. PMCID: PMC6132177.
Article
41. Li X, He S, Ma B. 2020; Autophagy and autophagy-related proteins in cancer. Mol Cancer. 19:12. DOI: 10.1186/s12943-020-1138-4. PMID: 31969156. PMCID: PMC6975070.
Article
42. Zhu Z, Yang C, Iyaswamy A, Krishnamoorthi S, Sreenivasmurthy SG, Liu J, Wang Z, Tong BC, Song J, Lu J, Cheung KH, Li M. 2019; Balancing mTOR signaling and autophagy in the treatment of Parkinson's disease. Int J Mol Sci. 20:728. DOI: 10.3390/ijms20030728. PMID: 30744070. PMCID: PMC6387269.
Article
43. Kim MH, Kim CE, Kim SW. 2018; Rosuvastatin inhibits high glucose-stimulated upregulation of VCAM-1 via the MAPK-signalling pathway in endothelial cells. Acta Cardiol. 73:13–18. DOI: 10.1080/00015385.2017.1321908. PMID: 28885098.
Article
44. Li X, Yang G, Zhao G, Wu B, Edin ML, Zeldin DC, Wang DW. 2011; Rosuvastatin attenuates the elevation in blood pressure induced by overexpression of human C-reactive protein. Hypertens Res. 34:869–875. DOI: 10.1038/hr.2011.44. PMID: 21562509. PMCID: PMC4042242.
Article
45. Osman I, Dong K, Kang X, Yu L, Xu F, Ahmed ASI, He X, Shen J, Hu G, Zhang W, Zhou J. 2021; YAP1/TEAD1 upregulate platelet-derived growth factor receptor beta to promote vascular smooth muscle cell proliferation and neointima formation. J Mol Cell Cardiol. 156:20–32. DOI: 10.1016/j.yjmcc.2021.03.005. PMID: 33753119. PMCID: PMC8217227.
Article
46. Bennett MR, Sinha S, Owens GK. 2016; Vascular smooth muscle cells in atherosclerosis. Circ Res. 118:692–702. DOI: 10.1161/CIRCRESAHA.115.306361. PMID: 26892967. PMCID: PMC4762053.
Article
47. Shi L, Tian C, Sun L, Cao F, Meng Z. 2018; The lncRNA TUG1/miR-145-5p/FGF10 regulates proliferation and migration in VSMCs of hypertension. Biochem Biophys Res Commun. 501:688–695. DOI: 10.1016/j.bbrc.2018.05.049. PMID: 29758198.
Article
48. Li YH, Wang QX, Zhou JW, Chu XM, Man YL, Liu P, Ren BB, Sun TR, An Y. 2013; Effects of rosuvastatin on expression of angiotensin-converting enzyme 2 after vascular balloon injury in rats. J Geriatr Cardiol. 10:151–158.
49. Ortega MA, Fraile-Martinez O, de Leon-Oliva D, Boaru DL, Lopez-Gonzalez L, García-Montero C, Alvarez-Mon MA, Guijarro LG, Torres-Carranza D, Saez MA, Diaz-Pedrero R, Albillos A, Alvarez-Mon M. 2024; Autophagy in its (proper) context: molecular basis, biological relevance, pharmacological modulation, and lifestyle medicine. Int J Biol Sci. 20:2532–2554. DOI: 10.7150/ijbs.95122. PMID: 38725847. PMCID: PMC11077378.
Article
50. Hu M, Ladowski JM, Xu H. 2024; The role of autophagy in vascular endothelial cell health and physiology. Cells. 13:825. DOI: 10.3390/cells13100825. PMID: 38786047. PMCID: PMC11120581.
Article
51. Salabei JK, Hill BG. 2015; Autophagic regulation of smooth muscle cell biology. Redox Biol. 4:97–103. DOI: 10.1016/j.redox.2014.12.007. PMID: 25544597. PMCID: PMC4309847.
Article
52. Kang SY, Lee SB, Kim HJ, Kim HT, Yang HO, Jang W. 2017; Autophagic modulation by rosuvastatin prevents rotenone-induced neurotoxicity in an in vitro model of Parkinson's disease. Neurosci Lett. 642:20–26. DOI: 10.1016/j.neulet.2017.01.063. PMID: 28137648.
Article
53. Wang X, Chen J, Huang X. 2019; Rosuvastatin attenuates myocardial ischemia-reperfusion injury via upregulating miR-17-3p-mediated autophagy. Cell Reprogram. 21:323–330. DOI: 10.1089/cell.2018.0053. PMID: 31730378. PMCID: PMC6918854.
Article
54. Zhang X, Qin Y, Wan X, Liu H, Lv C, Ruan W, He L, Lu L, Guo X. 2021; Rosuvastatin exerts anti-atherosclerotic effects by improving macrophage-related foam cell formation and polarization conversion via mediating autophagic activities. J Transl Med. 19:62. DOI: 10.1186/s12967-021-02727-3. PMID: 33568202. PMCID: PMC7877030.
Article
55. Liu D, Cui W, Liu B, Hu H, Liu J, Xie R, Yang X, Gu G, Zhang J, Zheng H. 2014; Atorvastatin protects vascular smooth muscle cells from TGF-β1-stimulated calcification by inducing autophagy via suppression of the β-catenin pathway. Cell Physiol Biochem. 33:129–141. DOI: 10.1159/000356656. PMID: 24481040.
Article
56. Zhou Q, Liao JK. 2009; Statins and cardiovascular diseases: from cholesterol lowering to pleiotropy. Curr Pharm Des. 15:467–478. DOI: 10.2174/138161209787315684. PMID: 19199975. PMCID: PMC2896785.
Article
57. Pan CH, Chen CJ, Shih CM, Wang MF, Wang JY, Wu CH. 2019; Oxidative stress-induced cellular senescence desensitizes cell growth and migration of vascular smooth muscle cells through down-regulation of platelet-derived growth factor receptor-beta. Aging (Albany NY). 11:8085–8102. DOI: 10.18632/aging.102270. PMID: 31584878. PMCID: PMC6814625.
Article
58. Chen S, Liu B, Kong D, Li S, Li C, Wang H, Sun Y. 2015; Atorvastatin calcium inhibits phenotypic modulation of PDGF-BB-induced VSMCs via down-regulation the Akt signaling pathway. PLoS One. 10:e0122577. DOI: 10.1371/journal.pone.0122577. PMID: 25874930. PMCID: PMC4398430.
Article
59. Chan KC, Wu CH, Huang CN, Lan KP, Chang WC, Wang CJ. 2012; Simvastatin inhibits glucose-stimulated vascular smooth muscle cell migration involving increased expression of RhoB and a block of Ras/Akt signal. Cardiovasc Ther. 30:75–84. DOI: 10.1111/j.1755-5922.2010.00226.x. PMID: 20946258.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr