Int J Stem Cells.  2024 May;17(2):194-203. 10.15283/ijsc23167.

Energy Metabolism in Human Pluripotent Stem and Differentiated Cells Compared Using a Seahorse XF96 Extracellular Flux Analyzer

Affiliations
  • 1Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan, Korea
  • 2Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, Korea
  • 3Department of Animal Science and Technology College of Biotechnology, Chung-Ang University, Anseong, Korea
  • 4Department of Neurosurgery, Uijeonbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea

Abstract

Evaluating cell metabolism is crucial during pluripotent stem cell (PSC) differentiation and somatic cell reprogramming as it affects cell fate. As cultured stem cells are heterogeneous, a comparative analysis of relative metabolism using existing metabolic analysis methods is difficult, resulting in inaccuracies. In this study, we measured human PSC basal metabolic levels using a Seahorse analyzer. We used fibroblasts, human induced PSCs, and human embryonic stem cells to monitor changes in basal metabolic levels according to cell number and determine the number of cells suitable for analysis. We evaluated normalization methods using glucose and selected the most suitable for the metabolic analysis of heterogeneous PSCs during the reprogramming stage. The response of fibroblasts to glucose increased with starvation time, with oxygen consumption rate and extracellular acidification rate responding most effectively to glucose 4 hours after starvation and declining after 5 hours of starvation. Fibroblasts and PSCs achieved appropriate responses to glucose without damaging their metabolism 2∼4 and 2∼3 hours after starvation, respectively. We developed a novel method for comparing basal metabolic rates of fibroblasts and PSCs, focusing on quantitative analysis of glycolysis and oxidative phosphorylation using glucose without enzyme inhibitors. This protocol enables efficient comparison of energy metabolism among cell types, including undifferentiated PSCs, differentiated cells, and cells undergoing cellular reprogramming, and addresses critical issues, such as differences in basal metabolic levels and sensitivity to normalization, providing valuable insights into cellular energetics.

Keyword

Pluripotent stem cells; Glycolysis; Oxidative phosphorylation; Mitochondria; Glucose

Figure

  • Fig. 1 Optimization of cell number is essential for the Seahorse cell metabolic assay. (A) Standard curves of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) according to cell number. (B) The appropriate number of cells is represented by a constant OCR/ECAR ratio. iPSC: induced pluripotent stem cell.

  • Fig. 2 Determination of the appropriate starvation period. (A) Oxygen consumption rate (OCR) response to glucose after glucose starvation. (B) Extracellular acidification rate (ECAR) response to glucose after glucose starvation. (C) Changes in OCR and ECAR responses to glucose in different cell types after glucose starvation. Student’s t-test: *p<0.05. iPSCs: induced pluripotent stem cells, hESCs: human embryonic stem cells.

  • Fig. 3 Linear regression of total protein concentration and cellular metabolism according to cell number. (A) Differences in size between fibroblasts (MRC5 and hiF-T) and pluripotent stem cells (TRA-1-60 + and human embryonic stem cells [hESCs]) (hiF-T-derived TRA-1-60 + and hESCs. (B) Linear regression of protein concentration according to cell type. (C) Linear regression of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) according to cell number.

  • Fig. 4 Differences in the measurement of metabolic levels according to normalization method. (A) Real-time adenosine triphosphate (ATP) rate assay of somatic and pluripotent stem cells. (B) Non-normalized ATP production rate (pmol/min). (C) Normalized ATP production rate (pmol/min) by total protein, oxygen consumption rate (OCR), and extracellular acidification rate (ECAR). Student’s t-test: *p<0.05. R/A: rotenone & antimycin A, hESCs: human embryonic stem cells.


Reference

References

1. Zhang J, Nuebel E, Daley GQ, Koehler CM, Teitell MA. 2012; Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell. 11:589–595. DOI: 10.1016/j.stem.2012.10.005. PMID: 23122286. PMCID: PMC3492890.
Article
2. Nishimura K, Fukuda A, Hisatake K. 2019; Mechanisms of the metabolic shift during somatic cell reprogramming. Int J Mol Sci. 20:2254. DOI: 10.3390/ijms20092254. PMID: 31067778. PMCID: PMC6539623.
Article
3. Agathocleous M, Love NK, Randlett O, et al. 2012; Metabolic differentiation in the embryonic retina. Nat Cell Biol. 14:859–864. DOI: 10.1038/ncb2531. PMID: 22750943. PMCID: PMC3442239.
Article
4. Facucho-Oliveira JM, Alderson J, Spikings EC, Egginton S, St John JC. 2007; Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J Cell Sci. 120(Pt 22):4025–4034. DOI: 10.1242/jcs.016972. PMID: 17971411.
Article
5. Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J. 2010; The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells. 28:721–733. DOI: 10.1002/stem.404. PMID: 20201066.
Article
6. Suhr ST, Chang EA, Tjong J, et al. 2010; Mitochondrial rejuvenation after induced pluripotency. PLoS One. 5:e14095. DOI: 10.1371/journal.pone.0014095. PMID: 21124794. PMCID: PMC2991355.
Article
7. Xu X, Duan S, Yi F, Ocampo A, Liu GH, Izpisua Belmonte JC. 2013; Mitochondrial regulation in pluripotent stem cells. Cell Metab. 18:325–332. DOI: 10.1016/j.cmet.2013.06.005. PMID: 23850316.
Article
8. Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB. 2015; Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature. 518:413–416. DOI: 10.1038/nature13981. PMID: 25487152. PMCID: PMC4336218.
Article
9. Moussaieff A, Kogan NM, Aberdam D. 2015; Concise review: energy metabolites: key mediators of the epigenetic state of pluripotency. Stem Cells. 33:2374–2380. DOI: 10.1002/stem.2041. PMID: 25873344.
Article
10. Shiraki N, Shiraki Y, Tsuyama T, et al. 2014; Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab. 19:780–794. DOI: 10.1016/j.cmet.2014.03.017. PMID: 24746804.
Article
11. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB. 2009; ATP-citrate lyase links cellular metabolism to histone acetylation. Science. 324:1076–1080. DOI: 10.1126/science.1164097. PMID: 19461003. PMCID: PMC2746744.
Article
12. Lunt SY, Vander Heiden MG. 2011; Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 27:441–464. DOI: 10.1146/annurev-cellbio-092910-154237. PMID: 21985671.
Article
13. Ryall JG, Cliff T, Dalton S, Sartorelli V. 2015; Metabolic reprogramming of stem cell epigenetics. Cell Stem Cell. 17:651–662. DOI: 10.1016/j.stem.2015.11.012. PMID: 26637942. PMCID: PMC4672395.
Article
14. Teslaa T, Teitell MA. 2015; Pluripotent stem cell energy metabolism: an update. EMBO J. 34:138–153. DOI: 10.15252/embj.201490446. PMID: 25476451. PMCID: PMC4337063.
Article
15. Madonna R, Görbe A, Ferdinandy P, De Caterina R. 2013; Glucose metabolism, hyperosmotic stress, and reprogramming of somatic cells. Mol Biotechnol. 55:169–178. DOI: 10.1007/s12033-013-9668-2. PMID: 23657997.
Article
16. Cha Y, Han MJ, Cha HJ, et al. 2017; Metabolic control of primed human pluripotent stem cell fate and function by the miR-200c-SIRT2 axis. Nat Cell Biol. 19:445–456. DOI: 10.1038/ncb3517. PMID: 28436968. PMCID: PMC5545746.
Article
17. Kuo TC, Huang KY, Yang SC, et al. 2020; Monocarboxylate transporter 4 is a therapeutic target in non-small cell lung cancer with aerobic glycolysis preference. Mol Ther Oncolytics. 18:189–201. DOI: 10.1016/j.omto.2020.06.012. PMID: 32695876. PMCID: PMC7364124.
Article
18. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. 2002. Molecular biology of the cell. 4th ed. Garland Science.
19. Tsogtbaatar E, Landin C, Minter-Dykhouse K, Folmes CDL. 2020; Energy metabolism regulates stem cell pluripotency. Front Cell Dev Biol. 8:87. DOI: 10.3389/fcell.2020.00087. PMID: 32181250. PMCID: PMC7059177.
Article
20. Gu W, Gaeta X, Sahakyan A, et al. 2016; Glycolytic metabolism plays a functional role in regulating human pluripotent stem cell state. Cell Stem Cell. 19:476–490. DOI: 10.1016/j.stem.2016.08.008. PMID: 27618217. PMCID: PMC5055460.
Article
21. Lees JG, Cliff TS, Gammilonghi A, et al. 2019; Oxygen regulates human pluripotent stem cell metabolic flux. Stem Cells Int. 2019:8195614. DOI: 10.1155/2019/8195614. PMID: 31236115. PMCID: PMC6545818.
Article
22. Vander Heiden MG, Cantley LC, Thompson CB. 2009; Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 324:1029–1033. DOI: 10.1126/science.1160809. PMID: 19460998. PMCID: PMC2849637.
Article
23. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. 2008; The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7:11–20. DOI: 10.1016/j.cmet.2007.10.002. PMID: 18177721.
Article
24. Takahashi K, Tanabe K, Ohnuki M, et al. 2007; Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131:861–872. DOI: 10.1016/j.cell.2007.11.019. PMID: 18035408.
Article
25. Tachibana M, Amato P, Sparman M, et al. 2013; Human embryonic stem cells derived by somatic cell nuclear transfer. Cell. 153:1228–1238. DOI: 10.1016/j.cell.2013.05.006. PMID: 23683578. PMCID: PMC3772789.
Article
26. Wang Q, Xiong Y, Zhang S, et al. 2021; The dynamics of metabolic characterization in iPSC-derived kidney organoid differentiation via a comparative omics approach. Front Genet. 12:632810. DOI: 10.3389/fgene.2021.632810. PMID: 33643392. PMCID: PMC7902935.
Article
27. Kim YH, Heo JS, Han HJ. 2006; High glucose increase cell cycle regulatory proteins level of mouse embryonic stem cells via PI3-K/Akt and MAPKs signal pathways. J Cell Physiol. 209:94–102. DOI: 10.1002/jcp.20706. PMID: 16775839.
Article
28. Folmes CD, Dzeja PP, Nelson TJ, Terzic A. 2012; Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell. 11:596–606. DOI: 10.1016/j.stem.2012.10.002. PMID: 23122287. PMCID: PMC3593051.
Article
29. Folmes CD, Nelson TJ, Martinez-Fernandez A, et al. 2011; Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 14:264–271. DOI: 10.1016/j.cmet.2011.06.011. PMID: 21803296. PMCID: PMC3156138.
Article
30. Kondoh H, Lleonart ME, Nakashima Y, et al. 2007; A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. Antioxid Redox Signal. 9:293–299. DOI: 10.1089/ars.2006.1467. PMID: 17184172.
Article
31. Prieto J, García-Cañaveras JC, León M, et al. 2021; c-MYC triggers lipid remodelling during early somatic cell reprogramming to pluripotency. Stem Cell Rev Rep. 17:2245–2261. DOI: 10.1007/s12015-021-10239-2. PMID: 34476741. PMCID: PMC8599373.
Article
32. Gu X, Ma Y, Liu Y, Wan Q. 2020; Measurement of mitochondrial respiration in adherent cells by Seahorse XF96 Cell Mito Stress Test. STAR Protoc. 2:100245. DOI: 10.1016/j.xpro.2020.100245. PMID: 33458707. PMCID: PMC7797920.
Article
33. Zhang J, Nuebel E, Wisidagama DR, et al. 2012; Measuring energy metabolism in cultured cells, including human pluripotent stem cells and differentiated cells. Nat Protoc. 7:1068–1085. DOI: 10.1038/nprot.2012.048. PMID: 22576106. PMCID: PMC3819135.
Article
34. Ruas JS, Siqueira-Santos ES, Amigo I, Rodrigues-Silva E, Kowaltowski AJ, Castilho RF. 2016; Underestimation of the maximal capacity of the mitochondrial electron transport system in oligomycin-treated cells. PLoS One. 11:e0150967. DOI: 10.1371/journal.pone.0150967. PMID: 26950698. PMCID: PMC4780810.
Article
35. Plitzko B, Loesgen S. 2018; Measurement of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in culture cells for assessment of the energy metabolism. Bio Protoc. 8:e2850. DOI: 10.21769/BioProtoc.2850. PMID: 34285967. PMCID: PMC8275291.
Article
36. Schmidt CA, Fisher-Wellman KH, Neufer PD. 2021; From OCR and ECAR to energy: perspectives on the design and interpretation of bioenergetics studies. J Biol Chem. 297:101140. DOI: 10.1016/j.jbc.2021.101140. PMID: 34461088. PMCID: PMC8479256.
Article
37. Kim HK, Ha TW, Lee MR. 2021; Single-cell transcriptome analysis as a promising tool to study pluripotent stem cell reprogramming. Int J Mol Sci. 22:5988. DOI: 10.3390/ijms22115988. PMID: 34206025. PMCID: PMC8198005.
Article
38. Zhang C, Skamagki M, Liu Z, et al. 2017; Biological significance of the suppression of oxidative phosphorylation in induced pluripotent stem cells. Cell Rep. 21:2058–2065. DOI: 10.1016/j.celrep.2017.10.098. PMID: 29166598. PMCID: PMC5841608.
Article
39. Yu L, Ji KY, Zhang J, et al. 2019; Core pluripotency factors promote glycolysis of human embryonic stem cells by activating GLUT1 enhancer. Protein Cell. 10:668–680. DOI: 10.1007/s13238-019-0637-9. PMID: 31152430. PMCID: PMC6711954.
Article
40. Cacchiarelli D, Trapnell C, Ziller MJ, et al. 2015; Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency. Cell. 162:412–424. DOI: 10.1016/j.cell.2015.06.016. PMID: 26186193. PMCID: PMC4511597.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr