Ann Lab Med.  2024 May;44(3):195-209. 10.3343/alm.2023.0389.

Clinical Practice Guideline for Blood-based Circulating Tumor DNA Assays

Affiliations
  • 1Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
  • 2Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
  • 3Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
  • 4Samkwang Medical Laboratories, Seoul, Korea
  • 5Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
  • 6Dxome Co. Ltd., Seongnam, Korea
  • 7Department of Laboratory Medicine, National Cancer Center, Goyang, Korea
  • 8Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

Abstract

Circulating tumor DNA (ctDNA) has emerged as a promising tool for various clinical applications, including early diagnosis, therapeutic target identification, treatment response monitoring, prognosis evaluation, and minimal residual disease detection. Consequently, ctDNA assays have been incorporated into clinical practice. In this review, we offer an indepth exploration of the clinical implementation of ctDNA assays. Notably, we examined existing evidence related to pre-analytical procedures, analytical components in current technologies, and result interpretation and reporting processes. The primary objective of this guidelines is to provide recommendations for the clinical utilization of ctDNA assays.

Keyword

Cell-free nucleic acid; Circulating tumor DNA; Guideline; High-throughput nucleotide sequencing

Reference

References

1. Merker JD, Oxnard GR, Compton C, Diehn M, Hurley P, Lazar AJ, et al. 2018; Circulating tumor DNA analysis in patients with cancer: American Society of Clinical Oncology and College of American Pathologists joint review. J Clin Oncol. 36:1631–41. DOI: 10.1200/JCO.2017.76.8671. PMID: 29504847.
2. Cho SM, Lee HS, Jeon S, Kim Y, Kong SY, Lee JK, et al. 2023; Cost-effectiveness analysis of three diagnostic strategies for the detection of EGFR mutation in advanced non-small cell lung cancer. Ann Lab Med. 43:605–13. DOI: 10.3343/alm.2023.43.6.605. PMID: 37387493. PMCID: PMC10345179.
3. Song HH, Park H, Cho D, Bang HI, Oh HJ, Kim J. Optimization of a protocol for isolating cell-free DNA from cerebrospinal fluid. Ann Lab Med. 2023; doi: 10.3343/alm.2023.0267. DOI: 10.3343/alm.2023.0267. PMID: 38151854.
4. Ignatiadis M, Lee M, Jeffrey SS. 2015; Circulating tumor cells and circulating tumor DNA: challenges and opportunities on the path to clinical utility. Clin Cancer Res. 21:4786–800. DOI: 10.1158/1078-0432.CCR-14-1190. PMID: 26527805.
5. Mouliere F, Rosenfeld N. 2015; Circulating tumor-derived DNA is shorter than somatic DNA in plasma. Proc Natl Acad Sci U S A. 112:3178–9. DOI: 10.1073/pnas.1501321112. PMID: 25733911. PMCID: PMC4371901.
6. Kim SY, Kim NS, editors. 2011. Manual for guideline adaptation ver 2.0. National Evidence-based Healthcare Collaborating Agency;Seoul:
7. Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J, et al. 2017; OncoKB: a precision oncology knowledge base. JCO Precis Oncol. 2017:PO.17.00011.
8. Baker A, Young K, Potter J, Madan I. 2010; A review of grading systems for evidence-based guidelines produced by medical specialties. Clin Med (Lond). 10:358–63. DOI: 10.7861/clinmedicine.10-4-358. PMID: 20849010. PMCID: PMC4952165.
9. The Korean Society of Radiology. 2020 Clinical imaging guidelines for justification of diagnostic imaging study by types of patients. Korean Medical Guideline;2020.
10. Pascual J, Attard G, Bidard FC, Curigliano G, De Mattos-Arruda L, Diehn M, et al. 2022; ESMO recommendations on the use of circulating tumour DNA assays for patients with cancer: a report from the ESMO Precision Medicine Working Group. Ann Oncol. 33:750–68. DOI: 10.1016/j.annonc.2022.05.520. PMID: 35809752.
11. Moding EJ, Nabet BY, Alizadeh AA, Diehn M. 2021; Detecting liquid remnants of solid tumors: circulating tumor DNA minimal residual disease. Cancer Discov. 11:2968–86. DOI: 10.1158/2159-8290.CD-21-0634. PMID: 34785539. PMCID: PMC8976700.
12. Henriksen TV, Reinert T, Christensen E, Sethi H, Birkenkamp-Demtröder K, Gögenur M, et al. 2020; The effect of surgical trauma on circulating free DNA levels in cancer patients-implications for studies of circulating tumor DNA. Mol Oncol. 14:1670–9. DOI: 10.1002/1878-0261.12729. PMID: 32471011. PMCID: PMC7400779.
13. Kamat AA, Bischoff FZ, Dang D, Baldwin MF, Han LY, Lin YG, et al. 2006; Circulating cell-free DNA: a novel biomarker for response to therapy in ovarian carcinoma. Cancer Biol Ther. 5:1369–74. DOI: 10.4161/cbt.5.10.3240. PMID: 16969071.
14. Jung M, Klotzek S, Lewandowski M, Fleischhacker M, Jung K. 2003; Changes in concentration of DNA in serum and plasma during storage of blood samples. Clin Chem. 49:1028–9. DOI: 10.1373/49.6.1028. PMID: 12766024.
15. van Ginkel JH, van den Broek DA, van Kuik J, Linders D, de Weger R, Willems SM, et al. 2017; Preanalytical blood sample workup for cell-free DNA analysis using Droplet Digital PCR for future molecular cancer diagnostics. Cancer Med. 6:2297–307. DOI: 10.1002/cam4.1184. PMID: 28940814. PMCID: PMC5633557.
16. Parpart-Li S, Bartlett B, Popoli M, Adleff V, Tucker L, Steinberg R, et al. 2017; The effect of preservative and temperature on the analysis of circulating tumor DNA. Clin Cancer Res. 23:2471–7. DOI: 10.1158/1078-0432.CCR-16-1691. PMID: 27827317.
17. Barra GB, Santa Rita TH, de Almeida Vasques J, Chianca CF, Nery LFA, Santana Soares Costa S. 2015; EDTA-mediated inhibition of DNases protects circulating cell-free DNA from ex vivo degradation in blood samples. Clin Biochem. 48:976–81. DOI: 10.1016/j.clinbiochem.2015.02.014. PMID: 25746148.
18. Kloten V, Rüchel N, Brüchle NO, Gasthaus J, Freudenmacher N, Steib F, et al. 2017; Liquid biopsy in colon cancer: comparison of different circulating DNA extraction systems following absolute quantification of KRAS mutations using Intplex allele-specific PCR. Oncotarget. 8:86253–63. DOI: 10.18632/oncotarget.21134. PMID: 29156792. PMCID: PMC5689682.
19. Morgan SR, Whiteley J, Donald E, Smith J, Eisenberg MT, Kallam E, et al. 2012; Comparison of KRAS mutation assessment in tumor DNA and circulating free DNA in plasma and serum samples. Clin Med Insights Pathol. 5:15–22. DOI: 10.4137/CPath.S8798. PMID: 22661904. PMCID: PMC3362326.
20. Meddeb R, Pisareva E, Thierry AR. 2019; Guidelines for the preanalytical conditions for analyzing circulating cell-free DNA. Clin Chem. 65:623–33. DOI: 10.1373/clinchem.2018.298323. PMID: 30792266.
21. El Messaoudi S, Rolet F, Mouliere F, Thierry AR. 2013; Circulating cell free DNA: preanalytical considerations. Clin Chim Acta. 424:222–30. DOI: 10.1016/j.cca.2013.05.022. PMID: 23727028.
22. Shin S, Woo HI, Kim JW, Kim Y, Lee KA. 2022; Clinical practice guidelines for pre-analytical procedures of plasma epidermal growth factor receptor variant testing. Ann Lab Med. 42:141–9. DOI: 10.3343/alm.2022.42.2.141. PMID: 34635607. PMCID: PMC8548242.
23. Parikh AR, Van Seventer EE, Siravegna G, Hartwig AV, Jaimovich A, He Y, et al. 2021; Minimal residual disease detection using a plasma-only circulating tumor DNA assay in patients with colorectal cancer. Clin Cancer Res. 27:5586–94. DOI: 10.1158/1078-0432.CCR-21-0410. PMID: 33926918. PMCID: PMC8530842.
24. Medina Diaz I, Nocon A, Mehnert DH, Fredebohm J, Diehl F, Holtrup F. 2016; Performance of Streck cfDNA blood collection tubes for liquid biopsy testing. PLoS One. 11:e0166354. DOI: 10.1371/journal.pone.0166354. PMID: 27832189. PMCID: PMC5104415.
25. Wang Q, Cai Y, Brady P, Vermeesch JR. 2015; Real-time PCR evaluation of cell-free DNA subjected to various storage and shipping conditions. Genet Mol Res. 14:12797–804. DOI: 10.4238/2015.October.19.23. PMID: 26505430.
26. Chiu RW, Poon LL, Lau TK, Leung TN, Wong EM, Lo YM. 2001; Effects of blood-processing protocols on fetal and total DNA quantification in maternal plasma. Clin Chem. 47:1607–13. DOI: 10.1093/clinchem/47.9.1607. PMID: 11514393.
27. Meddeb R, Dache ZAA, Thezenas S, Otandault A, Tanos R, Pastor B, et al. 2019; Quantifying circulating cell-free DNA in humans. Sci Rep. 9:5220. DOI: 10.1038/s41598-019-41593-4. PMID: 30914716. PMCID: PMC6435718.
28. Chan KC, Yeung SW, Lui WB, Rainer TH, Lo YM. 2005; Effects of preanalytical factors on the molecular size of cell-free DNA in blood. Clin Chem. 51:781–4. DOI: 10.1373/clinchem.2004.046219. PMID: 15708950.
29. Sozzi G, Roz L, Conte D, Mariani L, Andriani F, Verderio P, et al. 2005; Effects of prolonged storage of whole plasma or isolated plasma DNA on the results of circulating DNA quantification assays. J Natl Cancer Inst. 97:1848–50. DOI: 10.1093/jnci/dji432. PMID: 16368947.
30. Pérez-Barrios C, Nieto-Alcolado I, Torrente M, Jiménez-Sánchez C, Calvo V, Gutierrez-Sanz L, et al. 2016; Comparison of methods for circulating cell-free DNA isolation using blood from cancer patients: impact on biomarker testing. Transl Lung Cancer Res. 5:665–72. DOI: 10.21037/tlcr.2016.12.03. PMID: 28149760. PMCID: PMC5233878.
31. Sorber L, Zwaenepoel K, Deschoolmeester V, Roeyen G, Lardon F, Rolfo C, et al. 2017; A comparison of cell-free DNA isolation kits: isolation and quantification of cell-free DNA in plasma. J Mol Diagn. 19:162–8. DOI: 10.1016/j.jmoldx.2016.09.009. PMID: 27865784.
32. Bronkhorst AJ, Ungerer V, Holdenrieder S. 2020; Comparison of methods for the isolation of cell-free DNA from cell culture supernatant. Tumour Biol. 42:1010428320916314. DOI: 10.1177/1010428320916314. PMID: 32338581.
33. Jain M, Balatsky AV, Revina DB, Samokhodskaya LM. 2019; Direct comparison of QIAamp DSP Virus Kit and QIAamp Circulating Nucleic Acid Kit regarding cell-free fetal DNA isolation from maternal peripheral blood. Mol Cell Probes. 43:13–9. DOI: 10.1016/j.mcp.2018.12.006. PMID: 30584912.
34. Diefenbach RJ, Lee JH, Kefford RF, Rizos H. Evaluation of commercial kits for purification of circulating free DNA. Cancer Genet. 2018; 228-9:21–7. DOI: 10.1016/j.cancergen.2018.08.005. PMID: 30553469.
35. Trigg RM, Martinson LJ, Parpart-Li S, Shaw JA. 2018; Factors that influence quality and yield of circulating-free DNA: a systematic review of the methodology literature. Heliyon. 4:e00699. DOI: 10.1016/j.heliyon.2018.e00699. PMID: 30094369. PMCID: PMC6074610.
36. Ponti G, Maccaferri M, Manfredini M, Kaleci S, Mandrioli M, Pellacani G, et al. 2018; The value of fluorimetry (Qubit) and spectrophotometry (NanoDrop) in the quantification of cell-free DNA (cfDNA) in malignant melanoma and prostate cancer patients. Clin Chim Acta. 479:14–9. DOI: 10.1016/j.cca.2018.01.007. PMID: 29309771.
37. ICGC/TCGA Pan-Cancer of Whole Genomes Consortium. 2020; Pan-cancer analysis of whole genomes. Nature. 578:82–93.
38. Tomczak K, Czerwińska P, Wiznerowicz M. 2015; The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn). 19:A68–77. DOI: 10.5114/wo.2014.47136. PMID: 25691825. PMCID: PMC4322527.
39. Chakravarty D, Johnson A, Sklar J, Lindeman NI, Moore K, Ganesan S, et al. 2022; Somatic genomic testing in patients with metastatic or advanced cancer: ASCO provisional clinical opinion. J Clin Oncol. 40:1231–58. DOI: 10.1200/JCO.21.02767. PMID: 35175857.
40. Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J, et al. OncoKB: a precision oncology knowledge base. JCO Precis Oncol. 2017; 2017.
41. Lee JS, Park SS, Lee YK, Norton JA, Jeffrey SS. 2019; Liquid biopsy in pancreatic ductal adenocarcinoma: current status of circulating tumor cells and circulating tumor DNA. Mol Oncol. 13:1623–50. DOI: 10.1002/1878-0261.12537. PMID: 31243883. PMCID: PMC6670020.
42. Heitzer E, van den Broek D, Denis MG, Hofman P, Hubank M, Mouliere F, et al. 2022; Recommendations for a practical implementation of circulating tumor DNA mutation testing in metastatic non-small-cell lung cancer. ESMO Open. 7:100399. DOI: 10.1016/j.esmoop.2022.100399. PMID: 35202954. PMCID: PMC8867049.
43. Cristiano S, Leal A, Phallen J, Fiksel J, Adleff V, Bruhm DC, et al. 2019; Genome-wide cell-free DNA fragmentation in patients with cancer. Nature. 570:385–9. DOI: 10.1038/s41586-019-1272-6. PMID: 31142840. PMCID: PMC6774252.
44. Singh RR. 2020; Next-generation sequencing in high-sensitive detection of mutations in tumors: challenges, advances, and applications. J Mol Diagn. 22:994–1007. DOI: 10.1016/j.jmoldx.2020.04.213. PMID: 32480002.
45. Ma X, Shao Y, Tian L, Flasch DA, Mulder HL, Edmonson MN, et al. 2019; Analysis of error profiles in deep next-generation sequencing data. Genome Biol. 20:50. DOI: 10.1186/s13059-019-1659-6. PMID: 30867008. PMCID: PMC6417284.
46. Abbosh C, Birkbak NJ, Swanton C. 2018; Early stage NSCLC - challenges to implementing ctDNA-based screening and MRD detection. Nat Rev Clin Oncol. 15:577–86. DOI: 10.1038/s41571-018-0058-3. PMID: 29968853.
47. Heitzer E, Haque IS, Roberts CES, Speicher MR. 2019; Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet. 20:71–88. DOI: 10.1038/s41576-018-0071-5. PMID: 30410101.
48. Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. 2011; Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci U S A. 108:9530–5. DOI: 10.1073/pnas.1105422108. PMID: 21586637. PMCID: PMC3111315.
49. Wang TT, Abelson S, Zou J, Li T, Zhao Z, Dick JE, et al. 2019; High efficiency error suppression for accurate detection of low-frequency variants. Nucleic Acids Res. 47:e87. DOI: 10.1093/nar/gkz474. PMID: 31127310. PMCID: PMC6735726.
50. Li Z, Yi L, Gao P, Zhang R, Li J. 2019; The cornerstone of integrating circulating tumor DNA into cancer management. Biochim Biophys Acta Rev Cancer. 1871:1–11. DOI: 10.1016/j.bbcan.2018.11.002. PMID: 30419316.
51. Schmitt MW, Kennedy SR, Salk JJ, Fox EJ, Hiatt JB, Loeb LA. 2012; Detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci U S A. 109:14508–13. DOI: 10.1073/pnas.1208715109. PMID: 22853953. PMCID: PMC3437896.
52. Crysup B, Mandape S, King JL, Muenzler M, Kapema KB, Woerner AE. 2023; Using unique molecular identifiers to improve allele calling in low-template mixtures. Forensic Sci Int Genet. 63:102807. DOI: 10.1016/j.fsigen.2022.102807. PMID: 36462297.
53. Pécuchet N, Rozenholc Y, Zonta E, Pietrasz D, Didelot A, Combe P, et al. 2016; Analysis of base-position error rate of next-generation sequencing to detect tumor mutations in circulating DNA. Clin Chem. 62:1492–1503. DOI: 10.1373/clinchem.2016.258236. PMID: 27624137.
54. Newman AM, Lovejoy AF, Klass DM, Kurtz DM, Chabon JJ, Scherer F, et al. 2016; Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol. 34:547–55. DOI: 10.1038/nbt.3520. PMID: 27018799. PMCID: PMC4907374.
55. Deveson IW, Gong B, Lai K, LoCoco JS, Richmond TA, Schageman J, et al. 2021; Evaluating the analytical validity of circulating tumor DNA sequencing assays for precision oncology. Nat Biotechnol. 39:1115–28. DOI: 10.1038/s41587-021-00857-z. PMID: 33846644. PMCID: PMC8434938.
56. Azad TD, Chaudhuri AA, Fang P, Qiao Y, Esfahani MS, Chabon JJ, et al. 2020; Circulating tumor DNA analysis for detection of minimal residual disease after chemoradiotherapy for localized esophageal cancer. Gastroenterology. 158:494–505.e6. DOI: 10.1053/j.gastro.2019.10.039. PMID: 31711920. PMCID: PMC7010551.
57. Koessler T, Paradiso V, Piscuoglio S, Nienhold R, Ho L, Christinat Y, et al. 2020; Reliability of liquid biopsy analysis: an inter-laboratory comparison of circulating tumor DNA extraction and sequencing with different platforms. Lab Invest. 100:1475–84. DOI: 10.1038/s41374-020-0459-7. PMID: 32616816.
58. Jennings LJ, Arcila ME, Corless C, Kamel-Reid S, Lubin IM, Pfeifer J, et al. 2017; Guidelines for validation of next-generation sequencing-based oncology panels: A joint consensus recommendation of the Association for Molecular Pathology and College of American Pathologists. J Mol Diagn. 19:341–65. DOI: 10.1016/j.jmoldx.2017.01.011. PMID: 28341590. PMCID: PMC6941185.
59. Clarke CA, Lang K, Putcha G, Beer JP, Champagne M, Ferris A, et al. 2023; BLOODPAC: collaborating to chart a path towards blood-based screening for early cancer detection. Clin Transl Sci. 16:5–9. DOI: 10.1111/cts.13427. PMID: 36251491. PMCID: PMC9841293.
60. Godsey JH, Silvestro A, Barrett JC, Bramlett K, Chudova D, Deras I, et al. 2020; Generic protocols for the analytical validation of next-generation sequencing-based ctDNA assays: a joint consensus recommendation of the BloodPAC's Analytical Variables Working Group. Clin Chem. 66:1156–66. DOI: 10.1093/clinchem/hvaa164. PMID: 32870995. PMCID: PMC7462123.
61. Performance evaluation guidelines for next generation sequencing in vitro diagnostic medical devices. Ministry of Food and Drug Safety;2021. https://www.mfds.go.kr/brd/m_218/list.do.
62. On-site inspection evaluation checklist. Korean Institute of Genetic Testing Evaluation;2023.
63. Laboratory accreditation program checklist, molecular diagnostic test. Korean Society for Laboratory Medicine/Laboratory Medicine Foundation;2023.
64. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. 2015; Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 17:405–24. DOI: 10.1038/gim.2015.30. PMID: 25741868. PMCID: PMC4544753.
65. Sequence Variant Working Group. Sequence Variant Interpretation. https://clinicalgenome.org/working-groups/sequence-variant-interpretation/. Updated on Dec 2023.
66. Horak P, Griffith M, Danos AM, Pitel BA, Madhavan S, Liu X, et al. 2022; Standards for the classification of pathogenicity of somatic variants in cancer (oncogenicity): joint recommendations of Clinical Genome Resource (ClinGen), Cancer Genomics Consortium (CGC), and Variant Interpretation for Cancer Consortium (VICC). Genet Med. 24:986–98. DOI: 10.1016/j.gim.2022.01.001. PMID: 35101336. PMCID: PMC9081216.
67. Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, et al. 2017; Standards and guidelines for the interpretation and reporting of sequence variants in cancer: A joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 19:4–23. DOI: 10.1016/j.jmoldx.2016.10.002. PMID: 27993330. PMCID: PMC5707196.
68. Mateo J, Chakravarty D, Dienstmann R, Jezdic S, Gonzalez-Perez A, Lopez-Bigas N, et al. 2018; A framework to rank genomic alterations as targets for cancer precision medicine: the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann Oncol. 29:1895–902. DOI: 10.1093/annonc/mdy263. PMID: 30137196. PMCID: PMC6158764.
69. Wagner AH, Walsh B, Mayfield G, Tamborero D, Sonkin D, Krysiak K, et al. 2020; A harmonized meta-knowledgebase of clinical interpretations of somatic genomic variants in cancer. Nat Genet. 52:448–57. DOI: 10.1038/s41588-020-0603-8. PMID: 32246132. PMCID: PMC7127986.
70. Bruehl FK, Kim AS, Li MM, Lindeman NI, Moncur JT, Souers RJ, et al. 2022; Tiered somatic variant classification adoption has increased worldwide with some practice differences based on location and institutional setting. Arch Pathol Lab Med. 146:822–32. DOI: 10.5858/arpa.2021-0179-CP. PMID: 34979564.
71. Larson KL, Huang B, Weiss HL, Hull P, Westgate PM, Miller RW, et al. Clinical outcomes of molecular tumor boards: a systematic review. JCO Precis Oncol. 2021; 5:DOI: 10.1200/PO.20.00495. PMID: 34632252. PMCID: PMC8277300.
72. Jacobs MT, Mohindra NA, Shantzer L, Chen IL, Phull H, Mitchell W, et al. 2018; Use of low-frequency driver mutations detected by cell-free circulating tumor DNA to guide targeted therapy in non-small-cell lung cancer: a multicenter case series. JCO Precis Oncol. 2:1–10. DOI: 10.1200/PO.17.00318. PMID: 35135131.
73. Helman E, Nguyen M, Karlovich CA, Despain D, Choquette AK, Spira AI, et al. 2018; Cell-free DNA next-generation sequencing prediction of response and resistance to third-generation EGFR inhibitor. Clin Lung Cancer. 19:518–530.e7. DOI: 10.1016/j.cllc.2018.07.008. PMID: 30279111.
74. Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. 2014; Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 371:2477–87. DOI: 10.1056/NEJMoa1409405. PMID: 25426838. PMCID: PMC4290021.
75. Acuna-Hidalgo R, Sengul H, Steehouwer M, van de Vorst M, Vermeulen SH, Kiemeney LALM, et al. 2017; Ultra-sensitive sequencing identifies high prevalence of clonal hematopoiesis-associated mutations throughout adult life. Am J Hum Genet. 101:50–64. DOI: 10.1016/j.ajhg.2017.05.013. PMID: 28669404. PMCID: PMC5501773.
76. Mouliere F, Chandrananda D, Piskorz AM, Moore EK, Morris J, Ahlborn LB, et al. 2018; Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med. 10:eaat4921. DOI: 10.1126/scitranslmed.aat4921. PMID: 30404863. PMCID: PMC6483061.
77. Stout LA, Kassem N, Hunter C, Philips S, Radovich M, Schneider BP. 2021; Identification of germline cancer predisposition variants during clinical ctDNA testing. Sci Rep. 11:13624. DOI: 10.1038/s41598-021-93084-0. PMID: 34211039. PMCID: PMC8249601.
78. Miller DT, Lee K, Abul-Husn NS, Amendola LM, Brothers K, Chung WK, et al. 2022; ACMG SF v3.1 list for reporting of secondary findings in clinical exome and genome sequencing: A policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 24:1407–14. DOI: 10.1016/j.gim.2022.04.006. PMID: 35802134.
79. Li MM, Chao E, Esplin ED, Miller DT, Nathanson KL, Plon SE, et al. 2020; Points to consider for reporting of germline variation in patients undergoing tumor testing: a statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 22:1142–8. DOI: 10.1038/s41436-020-0783-8. PMID: 32321997.
80. Sundaresan TK, Sequist LV, Heymach JV, Riely GJ, Jänne PA, Koch WH, et al. 2016; Detection of T790M, the acquired resistance EGFR mutation, by tumor biopsy versus noninvasive blood-based analyses. Clin Cancer Res. 22:1103–10. DOI: 10.1158/1078-0432.CCR-15-1031. PMID: 26446944. PMCID: PMC4775471.
81. Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, et al. 2017; Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 545:446–51. DOI: 10.1038/nature22364. PMID: 28445469. PMCID: PMC5812436.
82. Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S, et al. 2017; Tracking the evolution of non-small-cell lung cancer. N Engl J Med. 376:2109–21. DOI: 10.1056/NEJMoa1616288. PMID: 28445112.
83. Zheng Z, Yu T, Zhao X, Gao X, Zhao Y, Liu G. 2020; Intratumor heterogeneity: A new perspective on colorectal cancer research. Cancer Med. 9:7637–45. DOI: 10.1002/cam4.3323. PMID: 32853464. PMCID: PMC7571807.
84. Bourbon E, Alcazer V, Cheli E, Huet S, Sujobert P. 2021; How to obtain a high quality ctDNA in lymphoma patients: preanalytical tips and tricks. Pharmaceuticals (Basel). 14:617. DOI: 10.3390/ph14070617. PMID: 34206947. PMCID: PMC8308879.
85. Bos MK, Nasserinejad K, Jansen MPHM, Angus L, Atmodimedjo PN, de Jonge E, et al. 2021; Comparison of variant allele frequency and number of mutant molecules as units of measurement for circulating tumor DNA. Mol Oncol. 15:57–66. DOI: 10.1002/1878-0261.12827. PMID: 33070443. PMCID: PMC7782075.
86. Georgiadis A, Durham JN, Keefer LA, Bartlett BR, Zielonka M, Murphy D, et al. 2019; Noninvasive detection of microsatellite instability and high tumor mutation burden in cancer patients treated with PD-1 blockade. Clin Cancer Res. 25:7024–34. DOI: 10.1158/1078-0432.CCR-19-1372. PMID: 31506389. PMCID: PMC6892397.
87. Willis J, Lefterova MI, Artyomenko A, Kasi PM, Nakamura Y, Mody K, et al. 2019; Validation of microsatellite instability detection using a comprehensive plasma-based genotyping panel. Clin Cancer Res. 25:7035–45. DOI: 10.1158/1078-0432.CCR-19-1324. PMID: 31383735.
88. Qiu P, Poehlein CH, Marton MJ, Laterza OF, Levitan D. 2019; Measuring tumor mutational burden (TMB) in plasma from mCRPC patients using two commercial NGS assays. Sci Rep. 9:114. DOI: 10.1038/s41598-018-37128-y. PMID: 30643180. PMCID: PMC6331610.
89. Gandara DR, Paul SM, Kowanetz M, Schleifman E, Zou W, Li Y, et al. 2018; Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat Med. 24:1441–8. DOI: 10.1038/s41591-018-0134-3. PMID: 30082870.
90. Marcus L, Fashoyin-Aje LA, Donoghue M, Yuan M, Rodriguez L, Gallagher PS, et al. 2021; FDA approval summary: pembrolizumab for the treatment of tumor mutational burden-high solid tumors. Clin Cancer Res. 27:4685–9. DOI: 10.1158/1078-0432.CCR-21-0327. PMID: 34083238. PMCID: PMC8416776.
91. Stockley T, Souza CA, Cheema PK, Melosky B, Kamel-Reid S, Tsao MS, et al. 2018; Evidence-based best practices for EGFR T790M testing in lung cancer in Canada. Curr Oncol. 25:163–9. DOI: 10.3747/co.25.4044. PMID: 29719432. PMCID: PMC5927787.
Full Text Links
  • ALM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr