1. Mandel P, Metais P. 1948; Nuclear acids in human blood plasma. C R Seances Soc Biol Fil. 142:241–3.
2. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. 1977; Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 37:646–50.
3. Siravegna G, Mussolin B, Buscarino M, Corti G, Cassingena A, Crisafulli G, et al. 2015; Clonal evolution and resistance to
EGFR blockade in the blood of colorectal cancer patients. Nat Med. 21:795–801. DOI:
10.1038/nm.3870. PMID:
26030179. PMCID:
PMC4868598.
Article
4. Ulz P, Belic J, Graf R, Auer M, Lafer I, Fischereder K, et al. 2016; Whole-genome plasma sequencing reveals focal amplifications as a driving force in metastatic prostate cancer. Nat Commun. 7:12008. DOI:
10.1038/ncomms12008. PMID:
27328849. PMCID:
PMC4917969.
Article
5. De Mattos-Arruda L, Weigelt B, Cortes J, Won HH, Ng CKY, Nuciforo P, et al. 2014; Capturing intra-tumor genetic heterogeneity by de novo mutation profiling of circulating cell-free tumor DNA: a proof-of-principle. Ann Oncol. 25:1729–35. DOI:
10.1093/annonc/mdu239. PMID:
25009010. PMCID:
PMC6276937.
Article
6. Andersson D, Kristiansson H, Kubista M, Ståhlberg A. 2021; Ultrasensitive circulating tumor DNA analysis enables precision medicine: experimental workflow considerations. Expert Rev Mol Diagn. 21:299–310. DOI:
10.1080/14737159.2021.1889371. PMID:
33683971.
Article
10. Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. 2017; Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 17:223–38. DOI:
10.1038/nrc.2017.7. PMID:
28233803.
Article
12. Stroun M, Lyautey J, Lederrey C, Olson-Sand A, Anker P. 2001; About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin Chim Acta. 313:139–42. DOI:
10.1016/S0009-8981(01)00665-9.
13. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. 1997; Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 389:251–60. DOI:
10.1038/38444. PMID:
9305837.
Article
15. Mouliere F, Chandrananda D, Piskorz AM, Moore EK, Morris J, Ahlborn LB, et al. 2018; Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med. 10:eaat4921. DOI:
10.1126/scitranslmed.aat4921. PMID:
30404863. PMCID:
PMC6483061.
Article
17. Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, et al. 2017; Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 545:446–51. DOI:
10.1038/nature22364. PMID:
28445469. PMCID:
PMC5812436.
18. Kamat AA, Bischoff FZ, Dang D, Baldwin MF, Han LY, Lin YG, et al. 2006; Circulating cell-free DNA: a novel biomarker for response to therapy in ovarian carcinoma. Cancer Biol Ther. 5:1369–74. DOI:
10.4161/cbt.5.10.3240. PMID:
16969071.
Article
19. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. 2014; Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 6:224ra24.
21. Grabuschnig S, Soh J, Heidinger P, Bachler T, Hirschböck E, Rosales Rodriguez I, et al. 2020; Circulating cell-free DNA is predominantly composed of retrotransposable elements and non-telomeric satellite DNA. J Biotechnol. 313:48–56. DOI:
10.1016/j.jbiotec.2020.03.002. PMID:
32165241.
Article
22. Fleischhacker M, Schmidt B. 2007; Circulating nucleic acids (CNAs) and cancer -a survey. Biochim Biophys Acta. 1775:181–232. DOI:
10.1016/j.bbcan.2006.10.001. PMID:
17137717.
24. Shin S, Woo HI, Kim JW, Kim Y, Lee KA. 2022; Clinical practice guidelines for pre-analytical procedures of plasma epidermal growth factor receptor variant testing. Ann Lab Med. 42:141–9. DOI:
10.3343/alm.2022.42.2.141. PMID:
34635607. PMCID:
PMC8548242.
Article
27. Melkonyan HS, Feaver WJ, Meyer E, Scheinker V, Shekhtman EM, Xin Z, et al. 2008; Transrenal nucleic acids: from proof of principle to clinical tests. Ann N Y Acad Sci. 1137:73–81. DOI:
10.1196/annals.1448.015. PMID:
18837928.
Article
28. Tsui NB, Jiang P, Chow KC, Su X, Leung TY, Sun H, et al. 2012; High resolution size analysis of fetal DNA in the urine of pregnant women by paired-end massively parallel sequencing. PLoS One. 7:e48319. DOI:
10.1371/journal.pone.0048319. PMID:
23118982. PMCID:
PMC3485143.
Article
29. Yao W, Mei C, Nan X, Hui L. 2016; Evaluation and comparison of in vitro degradation kinetics of DNA in serum, urine and saliva: A qualitative study. Gene. 590:142–8. DOI:
10.1016/j.gene.2016.06.033. PMID:
27317895.
Article
30. Bobillo S, Crespo M, Escudero L, Mayor R, Raheja P, Carpio C, et al. 2021; Cell free circulating tumor DNA in cerebrospinal fluid detects and monitors central nervous system involvement of B-cell lymphomas. Haematologica. 106:513–21. DOI:
10.3324/haematol.2019.241208. PMID:
32079701. PMCID:
PMC7849551.
Article
31. De Mattos-Arruda L, Mayor R, Ng CKY, Weigelt B, Martínez-Ricarte F, Torrejon D, et al. 2015; Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat Commun. 6:8839. DOI:
10.1038/ncomms9839. PMID:
26554728. PMCID:
PMC5426516.
Article
32. Kim Y, Shin S, Lee KA. 2021; Exosome-based detection of
EGFR T790M in plasma and pleural fluid of prospectively enrolled non-small cell lung cancer patients after first-line tyrosine kinase inhibitor therapy. Cancer Cell Int. 21:50. DOI:
10.1186/s12935-021-01761-x. PMID:
33435996. PMCID:
PMC7802208.
33. Asano H, Toyooka S, Tokumo M, Ichimura K, Aoe K, Ito S, et al. 2006; Detection of
EGFR gene mutation in lung cancer by mutant-enriched polymerase chain reaction assay. Clin Cancer Res. 12:43–8. DOI:
10.1158/1078-0432.CCR-05-0934. PMID:
16397022.
34. Azuara D, Ginesta MM, Gausachs M, Rodriguez-Moranta F, Fabregat J, Busquets J, et al. 2012; Nanofluidic digital PCR for
KRAS mutation detection and quantification in gastrointestinal cancer. Clin Chem. 58:1332–41. DOI:
10.1373/clinchem.2012.186577. PMID:
22745110.
35. Taly V, Pekin D, Benhaim L, Kotsopoulos SK, Le Corre D, Li X, et al. 2013; Multiplex picodroplet digital PCR to detect
KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clin Chem. 59:1722–31. DOI:
10.1373/clinchem.2013.206359. PMID:
23938455.
36. Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. 2011; Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci U S A. 108:9530–5. DOI:
10.1073/pnas.1105422108. PMID:
21586637. PMCID:
PMC3111315.
Article
37. Mosele F, Remon J, Mateo J, Westphalen CB, Barlesi F, Lolkema MP, et al. 2020; Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group. Ann Oncol. 31:1491–505. DOI:
10.1016/j.annonc.2020.07.014. PMID:
32853681.
Article
39. Rolfo C, Mack P, Scagliotti GV, Aggarwal C, Arcila ME, Barlesi F, et al. 2021; Liquid Biopsy for Advanced NSCLC: A Consensus Statement From the International Association for the Study of Lung Cancer. J Thorac Oncol. 16:1647–62. DOI:
10.1016/j.jtho.2021.06.017. PMID:
34246791.
Article
40. Litwin MS, Tan HJ. 2017; The diagnosis and treatment of prostate cancer: A review. JAMA. 317:2532–42. DOI:
10.1001/jama.2017.7248. PMID:
28655021.
41. de Bono J, Mateo J, Fizazi K, Saad F, Shore N, Sandhu S, et al. 2020; Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med. 382:2091–102. DOI:
10.1056/NEJMoa1911440. PMID:
32343890.
Article
42. Berruti A, Dogliotti L, Bitossi R, Fasolis G, Gorzegno G, Bellina M, et al. 2000; Incidence of skeletal complications in patients with bone metastatic prostate cancer and hormone refractory disease: predictive role of bone resorption and formation markers evaluated at baseline. J Urol. 164:1248–53. DOI:
10.1016/S0022-5347(05)67149-2.
Article
43. Bubendorf L, Schöpfer A, Wagner U, Sauter G, Moch H, Willi N, et al. 2000; Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol. 31:578–83. DOI:
10.1053/hp.2000.6698. PMID:
10836297.
Article
44. Dang HX, Chauhan PS, Ellis H, Feng W, Harris PK, Smith G, et al. 2020; Cell-free DNA alterations in the
AR enhancer and locus predict resistance to AR-directed therapy in patients with metastatic prostate cancer. JCO Precis Oncol. 4:680–713. DOI:
10.1200/PO.20.00047. PMID:
32903952. PMCID:
PMC7446541.
45. Lau E, McCoy P, Reeves F, Chow K, Clarkson M, Kwan EM, et al. 2020; Detection of ctDNA in plasma of patients with clinically localised prostate cancer is associated with rapid disease progression. Genome Med. 12:72. DOI:
10.1186/s13073-020-00770-1. PMID:
32807235. PMCID:
PMC7430029.
Article
46. Shaya J, Nonato T, Cabal A, Randall JM, Millard F, Stewart T, et al. 2021; Analysis of the prognostic significance of circulating tumor DNA in metastatic castrate resistant prostate cancer. Clin Genitourin Cancer. 19:564.e1–e10. DOI:
10.1016/j.clgc.2021.07.012. PMID:
34452870.
Article
47. Hong S, Won YJ, Lee JJ, Jung KW, Kong HJ, Im JS, et al. 2021; Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2018. Cancer Res Treat. 53:301–15. DOI:
10.4143/crt.2021.291. PMID:
33735559. PMCID:
PMC8053867.
Article
48. Kim Y, Jun JK, Choi KS, Lee HY, Park EC. 2011; Overview of the national cancer screening programme and the cancer screening status in Korea. Asian Pac J Cancer Prev. 12:725–30.
49. Dasari A, Morris VK, Allegra CJ, Atreya C, Benson AB 3rd, Boland P, et al. 2020; ctDNA applications and integration in colorectal cancer: an NCI Colon and Rectal-Anal Task Forces whitepaper. Nat Rev Clin Oncol. 17:757–70. DOI:
10.1038/s41571-020-0392-0. PMID:
32632268. PMCID:
PMC7790747.
Article
50. Flamini E, Mercatali L, Nanni O, Calistri D, Nunziatini R, Zoli W, et al. 2006; Free DNA and carcinoembryonic antigen serum levels: an important combination for diagnosis of colorectal cancer. Clin Cancer Res. 12:6985–8. DOI:
10.1158/1078-0432.CCR-06-1931. PMID:
17145818.
Article
51. Luo H, Zhao Q, Wei W, Zheng L, Yi S, Li G, et al. 2020; Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Sci Transl Med. 12:eaax7533. DOI:
10.1126/scitranslmed.aax7533. PMID:
31894106.
Article
52. Tie J, Wang Y, Springer S, Kinde I, Wong HL, Kosmider S, et al. 2016; Serial circulating tumor DNA (ctDNA) and recurrence risk in patients (pts) with resectable colorectal liver metastasis (CLM). J Clin Oncol. 34(S):e15131–e15131. DOI:
10.1200/JCO.2016.34.15_suppl.e15131.
Article
53. Venook AP, Niedzwiecki D, Lenz HJ, Innocenti F, Fruth B, Meyerhardt JA, et al. 2017; Effect of first-line chemotherapy combined with cetuximab or bevacizumab on overall survival in patients with
KRAS wild-type advanced or metastatic colorectal cancer: A randomized clinical trial. JAMA. 317:2392–401. DOI:
10.1001/jama.2017.7105. PMID:
28632865. PMCID:
PMC5545896.
Article
54. Kopetz S, Grothey A, Yaeger R, Van Cutsem E, Desai J, Yoshino T, et al. 2019; Encorafenib, binimetinib, and cetuximab in
BRAF V600E-mutated colorectal cancer. N Engl J Med. 381:1632–43. DOI:
10.1056/NEJMoa1908075. PMID:
31566309.
Article
55. Meric-Bernstam F, Hurwitz H, Raghav KPS, McWilliams RR, Fakih M, VanderWalde A, et al. 2019; Pertuzumab plus trastuzumab for
HER2-amplified metastatic colorectal cancer (MyPathway): an updated report from a multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol. 20:518–30. DOI:
10.1016/S1470-2045(18)30904-5.
57. Magbanua MJM, Swigart LB, Wu HT, Hirst GL, Yau C, Wolf DM, et al. 2021; Circulating tumor DNA in neoadjuvant-treated breast cancer reflects response and survival. Ann Oncol. 32:229–39. DOI:
10.1016/j.annonc.2020.11.007. PMID:
33232761. PMCID:
PMC9348585.
Article
58. Chopra N, Tovey H, Pearson A, Cutts R, Toms C, Proszek P, et al. 2020; Homologous recombination DNA repair deficiency and PARP inhibition activity in primary triple negative breast cancer. Nat Commun. 11:2662. DOI:
10.1038/s41467-020-16142-7. PMID:
32471999. PMCID:
PMC7260192.
Article
59. Rose M, Burgess JT, O'Byrne K, Richard DJ, Bolderson E. PARP inhibitors: Clinical relevance, mechanisms of action and tumor resistance. Front Cell Dev Biol. 2020; 8:564601. DOI:
10.3389/fcell.2020.564601. PMID:
33015058. PMCID:
PMC7509090.
Article
60. Weigelt B, Comino-Méndez I, de Bruijn I, Tian L, Meisel JL, García-Murillas I, et al. 2017; Diverse
BRCA1 and
BRCA2 reversion mutations in circulating cell-free DNA of therapy-resistant breast or ovarian cancer. Clin Cancer Res. 23:6708–20. DOI:
10.1158/1078-0432.CCR-17-0544. PMID:
28765325. PMCID:
PMC5728372.
61. Cheng ML, Pectasides E, Hanna GJ, Parsons HA, Choudhury AD, Oxnard GR. 2021; Circulating tumor DNA in advanced solid tumors: Clinical relevance and future directions. CA Cancer J Clin. 71:176–90. DOI:
10.3322/caac.21650. PMID:
33165928.
Article
62. Ballehaninna UK, Chamberlain RS. 2012; The clinical utility of serum CA 19-9 in the diagnosis, prognosis and management of pancreatic adenocarcinoma: An evidence based appraisal. J Gastrointest Oncol. 3:105–19.
63. Sivapalan L, Kocher HM, Ross-Adams H, Chelala C. 2021; Molecular profiling of ctDNA in pancreatic cancer: Opportunities and challenges for clinical application. Pancreatology. 21:363–78. DOI:
10.1016/j.pan.2020.12.017. PMID:
33451936. PMCID:
PMC7994018.
Article
64. Grunvald MW, Jacobson RA, Kuzel TM, Pappas SG, Masood A. 2020; Current status of circulating tumor DNA liquid biopsy in pancreatic cancer. Int J Mol Sci. 21:7651. DOI:
10.3390/ijms21207651. PMID:
33081107. PMCID:
PMC7589736.
Article
66. Asante DB, Calapre L, Ziman M, Meniawy TM, Gray ES. 2020; Liquid biopsy in ovarian cancer using circulating tumor DNA and cells: Ready for prime time? Cancer Lett. 468:59–71. DOI:
10.1016/j.canlet.2019.10.014. PMID:
31610267.
Article
67. Vargas AN. 2014; Natural history of ovarian cancer. Ecancermedicalscience. 8:465.
68. Bogani G, Matteucci L, Tamberi S, Ditto A, Sabatucci I, Murgia F, et al. 2019; RECIST 1.1 criteria predict recurrence-free survival in advanced ovarian cancer submitted to neoadjuvant chemotherapy. Eur J Obstet Gynecol Reprod Biol. 237:93–9. DOI:
10.1016/j.ejogrb.2019.04.007. PMID:
31029972.
Article
70. Hentze JL, Høgdall C, Kjær SK, Blaakær J, Høgdall E. 2017; Searching for new biomarkers in ovarian cancer patients: Rationale and design of a retrospective study under the Mermaid III project. Contemp Clin Trials Commun. 8:167–74. DOI:
10.1016/j.conctc.2017.10.003. PMID:
29696206. PMCID:
PMC5898550.
Article
71. Asaoka Y, Ijichi H, Koike K. 2015; PD-1 Blockade in tumors with mismatch-repair deficiency. N Engl J Med. 373:1979. DOI:
10.1056/NEJMc1510353.
Article
72. Georgiadis A, Durham JN, Keefer LA, Bartlett BR, Zielonka M, Murphy D, et al. 2019; Non-invasive detection of microsatellite instability and high tumor mutation burden in cancer patients treated with PD-1 blockade. Clin Cancer Res. 25:7024–34. DOI:
10.1158/1078-0432.CCR-19-1372. PMID:
31506389. PMCID:
PMC6892397.
Article
73. Friedlaender A, Nouspikel T, Christinat Y, Ho L, McKee T, Addeo A. 2020; Tissue-plasma TMB comparison and plasma TMB monitoring in patients with metastatic non-small cell lung cancer receiving immune checkpoint inhibitors. Front Oncol. 10:142. DOI:
10.3389/fonc.2020.00142. PMID:
32117779. PMCID:
PMC7028749.
Article
74. Qiu P, Poehlein CH, Marton MJ, Laterza OF, Levitan D. 2019; Measuring tumor mutational burden (TMB) in plasma from mCRPC patients using two commercial NGS assays. Sci Rep. 9:114. DOI:
10.1038/s41598-018-37128-y. PMID:
30643180. PMCID:
PMC6331610.
Article
75. Miyazawa H, Tanaka T, Nagai Y, Matsuoka M, Sutani A, Udagawa K, et al. 2008; Peptide nucleic acid-locked nucleic acid polymerase chain reaction clamp-based detection test for gefitinib-refractory T790M epidermal growth factor receptor mutation. Cancer Sci. 99:595–600. DOI:
10.1111/j.1349-7006.2007.00706.x. PMID:
18271876.
Article
76. Freidin MB, Freydina DV, Leung M, Montero Fernandez A, Nicholson AG, Lim E. 2015; Circulating tumor DNA outperforms circulating tumor cells for
KRAS mutation detection in thoracic malignancies. Clin Chem. 61:1299–304. DOI:
10.1373/clinchem.2015.242453. PMID:
26272233.
77. Sefrioui D, Sarafan-Vasseur N, Beaussire L, Baretti M, Gangloff A, Blan-chard F, et al. 2015; Clinical value of chip-based digital-PCR platform for the detection of circulating DNA in metastatic colorectal cancer. Dig Liver Dis. 47:884–90. DOI:
10.1016/j.dld.2015.05.023. PMID:
26160500.
Article
78. Taniguchi K, Uchida J, Nishino K, Kumagai T, Okuyama T, Okami J, et al. 2011; Quantitative detection of
EGFR mutations in circulating tumor DNA derived from lung adenocarcinomas. Clin Cancer Res. 17:7808–15. DOI:
10.1158/1078-0432.CCR-11-1712. PMID:
21976538.
79. Newman AM, Bratman SV, To J, Wynne JF, Eclov NCW, Modlin LA, et al. 2014; An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 20:548–54. DOI:
10.1038/nm.3519. PMID:
24705333. PMCID:
PMC4016134.
Article
80. Gale D, Lawson ARJ, Howarth K, Madi M, Durham B, Smalley S, et al. 2018; Development of a highly sensitive liquid biopsy platform to detect clinically-relevant cancer mutations at low allele fractions in cell-free DNA. PLoS One. 13:e0194630. DOI:
10.1371/journal.pone.0194630. PMID:
29547634. PMCID:
PMC5856404.
Article
81. Narayan A, Carriero NJ, Gettinger SN, Kluytenaar J, Kozak KR, Yock TI, et al. 2012; Ultrasensitive measurement of hotspot mutations in tumor DNA in blood using error-suppressed multiplexed deep sequencing. Cancer Res. 72:3492–8. DOI:
10.1158/0008-5472.CAN-11-4037. PMID:
22581825. PMCID:
PMC3426449.
Article