Lab Med Online.  2023 Oct;13(4):282-289. 10.47429/lmo.2023.13.4.282.

Detection of Mosaic Sequence Variants Associated with Human Genetic Diseases

Affiliations
  • 1Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
  • 2Department of Laboratory Medicine , Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
  • 3Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea

Abstract

Mosaicism refers to cells with different genetic makeups within a single zygote. Although relatively common, the frequency of mosaicism is often underestimated, particularly in low-grade cases, due to limitations in detection methods. This review focuses on mosaicism and various detection techniques, emphasizing the types of specimens and tissues involved. While next-generation sequencing is a highly effective detection method, other techniques are expected to play a significant role in the identification or confirmation of mosaicism.

Keyword

Mosaicism; Germline; Somatic; Next-generation sequencing

Figure

  • Fig. 1 Distribution of mutant cells in the human body and different types of mosaicism in particular individuals. In somatic or germline mosaicism, mutant cells may appear with different mosaicism ratios in distinct tissues of patients, including gonads. (A) Example of somatic mosaicism confined to endoderm among the three germinal cell layers. (B) In focal cortical dysplasia, somatic mosaicism appears localized to a specific organ, such as the brain. (C) Germline or gonadal mosaicism refers to genetic variation in the genomes of germline cells within an individual. (D) Somatic and germline mosaicism may coexist in the same individual.


Reference

1. Thorpe J, Osei-Owusu IA, Avigdor BE, Tupler R, Pevsner J. 2020; Mosaicism in human health and disease. Annu Rev Genet. 54:487–510. DOI: 10.1146/annurev-genet-041720-093403. PMID: 32916079. PMCID: PMC8483770.
2. Freed D, Stevens EL, Pevsner J. 2014; Somatic mosaicism in the human genome. Genes (Basel). 5:1064–94. DOI: 10.3390/genes5041064. PMID: 25513881. PMCID: PMC4276927.
3. Campbell IM, Shaw CA, Stankiewicz P, Lupski JR. 2015; Somatic mosaicism: implications for disease and transmission genetics. Trends Genet. 31:382–92. DOI: 10.1016/j.tig.2015.03.013. PMID: 25910407. PMCID: PMC4490042.
4. Huang AY, Xu X, Ye AY, Wu Q, Yan L, Zhao B, et al. 2014; Postzygotic single-nucleotide mosaicisms in whole-genome sequences of clinically unremarkable individuals. Cell Res. 24:1311–27. DOI: 10.1038/cr.2014.131. PMID: 25312340. PMCID: PMC4220156.
5. Lim YH, Moscato Z, Choate KA. 2017; Mosaicism in cutaneous disorders. Annu Rev Genet. 51:123–41. DOI: 10.1146/annurev-genet-121415-121955. PMID: 29178821. PMCID: PMC8026264.
6. D'Gama AM, Walsh CA. 2018; Somatic mosaicism and neurodevelopmental disease. Nat Neurosci. 21:1504–14. DOI: 10.1038/s41593-018-0257-3. PMID: 30349109.
7. Kurek KC, Luks VL, Ayturk UM, Alomari AI, Fishman SJ, Spencer SA, et al. 2012; Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am J Hum Genet. 90:1108–15. DOI: 10.1016/j.ajhg.2012.05.006. PMID: 22658544. PMCID: PMC3370283.
8. Cao Y, Tokita MJ, Chen ES, Ghosh R, Chen T, Feng Y, et al. 2019; A clinical survey of mosaic single nucleotide variants in disease-causing genes detected by exome sequencing. Genome Med. 11:48. DOI: 10.1186/s13073-019-0658-2. PMID: 31349857. PMCID: PMC6660700.
9. D'Gama AM, Woodworth MB, Hossain AA, Bizzotto S, Hatem NE, LaCoursiere CM, et al. 2017; Somatic mutations activating the mTOR pathway in dorsal telencephalic progenitors cause a continuum of cortical dysplasias. Cell Rep. 21:3754–66. DOI: 10.1016/j.celrep.2017.11.106. PMID: 29281825. PMCID: PMC5752134.
10. Lim JS, Gopalappa R, Kim SH, Ramakrishna S, Lee M, Kim WI, et al. 2017; Somatic mutations in TSC1 and TSC2 cause focal cortical dysplasia. Am J Hum Genet. 100:454–72. DOI: 10.1016/j.ajhg.2017.01.030. PMID: 28215400. PMCID: PMC5339289.
11. Perez D, Hsieh DT, Rohena L. 2017; Somatic mosaicism of PCDH19 in a male with early infantile epileptic encephalopathy and review of the literature. Am J Med Genet A. 173:1625–30. DOI: 10.1002/ajmg.a.38233. PMID: 28462982.
12. Freed D, Pevsner J. 2016; The contribution of mosaic variants to autism spectrum disorder. PLoS Genet. 12:e1006245. DOI: 10.1371/journal.pgen.1006245. PMID: 27632392. PMCID: PMC5024993.
13. Krupp DR, Barnard RA, Duffourd Y, Evans SA, Mulqueen RM, Bernier R, et al. 2017; Exonic mosaic mutations contribute risk for autism spectrum disorder. Am J Hum Genet. 101:369–90. DOI: 10.1016/j.ajhg.2017.07.016. PMID: 28867142. PMCID: PMC5590950.
14. Dou Y, Yang X, Li Z, Wang S, Zhang Z, Ye AY, et al. 2017; Postzygotic single-nucleotide mosaicisms contribute to the etiology of autism spectrum disorder and autistic traits and the origin of mutations. Hum Mutat. 38:1002–13. DOI: 10.1002/humu.23255. PMID: 28503910. PMCID: PMC5518181.
15. Wright CF, Prigmore E, Rajan D, Handsaker J, McRae J, Kaplanis J, et al. 2019; Clinically-relevant postzygotic mosaicism in parents and children with developmental disorders in trio exome sequencing data. Nat Commun. 10:2985. DOI: 10.1038/s41467-019-11059-2. PMID: 31278258. PMCID: PMC6611863.
16. García-Romero MT, Parkin P, Lara-Corrales I. 2016; Mosaic neurofibromatosis type 1: a systematic review. Pediatr Dermatol. 33:9–17. DOI: 10.1111/pde.12673. PMID: 26338194.
17. Giannikou K, Lasseter KD, Grevelink JM, Tyburczy ME, Dies KA, Zhu Z, et al. 2019; Low-level mosaicism in tuberous sclerosis complex: prevalence, clinical features, and risk of disease transmission. Genet Med. 21:2639–43. DOI: 10.1038/s41436-019-0562-6. PMID: 31160751.
18. Cook CB, Armstrong L, Boerkoel CF, Clarke LA, du Souich C, Demos MK, et al. 2021; Somatic mosaicism detected by genome-wide sequencing in 500 parent-child trios with suspected genetic disease: clinical and genetic counseling implications. Cold Spring Harb Mol Case Stud. 7:a006125. DOI: 10.1101/mcs.a006125. PMID: 34697084. PMCID: PMC8751411.
19. Aretz S, Stienen D, Friedrichs N, Stemmler S, Uhlhaas S, Rahner N, et al. 2007; Somatic APC mosaicism: a frequent cause of familial adenomatous polyposis (FAP). Hum Mutat. 28:985–92. DOI: 10.1002/humu.20549. PMID: 17486639.
20. Hes FJ, Nielsen M, Bik EC, Konvalinka D, Wijnen JT, Bakker E, et al. 2008; Somatic APC mosaicism: an underestimated cause of polyposis coli. Gut. 57:71–6. DOI: 10.1136/gut.2006.117796. PMID: 17604324.
21. Petrackova A, Vasinek M, Sedlarikova L, Dyskova T, Schneiderova P, Novosad T, et al. 2019; Standardization of sequencing coverage depth in NGS: recommendation for detection of clonal and subclonal mutations in cancer diagnostics. Front Oncol. 9:851. DOI: 10.3389/fonc.2019.00851. PMID: 31552176. PMCID: PMC6738196.
22. Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. 2011; Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci U S A. 108:9530–5. DOI: 10.1073/pnas.1105422108. PMID: 21586637. PMCID: PMC3111315.
23. Hiatt JB, Pritchard CC, Salipante SJ, O'Roak BJ, Shendure J. 2013; Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation. Genome Res. 23:843–54. DOI: 10.1101/gr.147686.112. PMID: 23382536. PMCID: PMC3638140.
24. Boyle EA, O'Roak BJ, Martin BK, Kumar A, Shendure J. 2014; MIPgen: optimized modeling and design of molecular inversion probes for targeted resequencing. Bioinformatics. 30:2670–2. DOI: 10.1093/bioinformatics/btu353. PMID: 24867941. PMCID: PMC4155255.
25. MacConaill LE, Burns RT, Nag A, Coleman HA, Slevin MK, Giorda K, et al. 2018; Unique, dual-indexed sequencing adapters with UMIs effectively eliminate index cross-talk and significantly improve sensitivity of massively parallel sequencing. BMC Genomics. 19:30. DOI: 10.1186/s12864-017-4428-5. PMID: 29310587. PMCID: PMC5759201.
26. Hirotsu Y, Otake S, Ohyama H, Amemiya K, Higuchi R, Oyama T, et al. 2020; Dual-molecular barcode sequencing detects rare variants in tumor and cell free DNA in plasma. Sci Rep. 10:3391. DOI: 10.1038/s41598-020-60361-3. PMID: 32099048. PMCID: PMC7042261.
27. Yeom H, Lee Y, Ryu T, Noh J, Lee AC, Lee HB, et al. 2019; Barcode-free next-generation sequencing error validation for ultra-rare variant detection. Nat Commun. 10:977. DOI: 10.1038/s41467-019-08941-4. PMID: 30816127. PMCID: PMC6395625.
28. Gambin T, Liu Q, Karolak JA, Grochowski CM, Xie NG, Wu LR, et al. 2020; Low-level parental somatic mosaic SNVs in exomes from a large cohort of trios with diverse suspected Mendelian conditions. Genet Med. 22:1768–76. DOI: 10.1038/s41436-020-0897-z. PMID: 32655138. PMCID: PMC7606563.
29. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al. 2013; Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 31:213–9. DOI: 10.1038/nbt.2514. PMID: 23396013. PMCID: PMC3833702.
30. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. 2012; VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22:568–76. DOI: 10.1101/gr.129684.111. PMID: 22300766. PMCID: PMC3290792.
31. Yang X, Xu X, Breuss MW, Antaki D, Ball LL, Chung C, et al. 2023; Control-independent mosaic single nucleotide variant detection with DeepMosaic. Nat Biotechnol. 41:870–7. DOI: 10.1038/s41587-022-01559-w. PMID: 36593400. PMCID: PMC10314968.
32. Dou Y, Kwon M, Rodin RE, Cortés-Ciriano I, Doan R, Luquette LJ, et al. 2020; Accurate detection of mosaic variants in sequencing data without matched controls. Nat Biotechnol. 38:314–9. DOI: 10.1038/s41587-019-0368-8. PMID: 31907404. PMCID: PMC7065972.
33. Goriely A, Lord H, Lim J, Johnson D, Lester T, Firth HV, et al. 2010; Germline and somatic mosaicism for FGFR2 mutation in the mother of a child with Crouzon syndrome: implications for genetic testing in "paternal age-effect" syndromes. Am J Med Genet A. 152A:2067–73. DOI: 10.1002/ajmg.a.33513. PMID: 20635358. PMCID: PMC2988406.
34. Hyland VJ, Robertson SP, Flanagan S, Savarirayan R, Roscioli T, Masel J, et al. 2003; Somatic and germline mosaicism for a R248C missense mutation in FGFR3, resulting in a skeletal dysplasia distinct from thanatophoric dysplasia. Am J Med Genet A. 120A:157–68. DOI: 10.1002/ajmg.a.20012. PMID: 12833394.
35. Taylor SA, Deugau KV, Lillicrap DP. 1991; Somatic mosaicism and female-to-female transmission in a kindred with hemophilia B (factor IX deficiency). Proc Natl Acad Sci U S A. 88:39–42. DOI: 10.1073/pnas.88.1.39. PMID: 1986380. PMCID: PMC50743.
36. Costa JM, Vidaud D, Laurendeau I, Vidaud M, Fressinaud E, Moisan JP, et al. 2000; Somatic mosaicism and compound heterozygosity in female hemophilia B. Blood. 96:1585–7. DOI: 10.1182/blood.V96.4.1585. PMID: 10942410.
37. Leuer M, Oldenburg J, Lavergne JM, Ludwig M, Fregin A, Eigel A, et al. 2001; Somatic mosaicism in hemophilia A: a fairly common event. Am J Hum Genet. 69:75–87. DOI: 10.1086/321285. PMID: 11410838. PMCID: PMC1226050.
38. Lemmers RJ, van der Wielen MJ, Bakker E, Padberg GW, Frants RR, van der Maarel SM. 2004; Somatic mosaicism in FSHD often goes undetected. Ann Neurol. 55:845–50. DOI: 10.1002/ana.20106. PMID: 15174019.
39. Buzhov BT, Lemmers RJ, Tournev I, van der Wielen MJ, Ishpekova B, Petkov R, et al. 2005; Recurrent somatic mosaicism for D4Z4 contractions in a family with facioscapulohumeral muscular dystrophy. Neuromuscul Disord. 15:471–5. DOI: 10.1016/j.nmd.2005.03.005. PMID: 15935668.
40. Lim JS, Kim WI, Kang HC, Kim SH, Park AH, Park EK, et al. 2015; Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat Med. 21:395–400. DOI: 10.1038/nm.3824. PMID: 25799227.
41. Møller RS, Weckhuysen S, Chipaux M, Marsan E, Taly V, Bebin EM, et al. 2016; Germline and somatic mutations in the MTOR gene in focal cortical dysplasia and epilepsy. Neurol Genet. 2:e118. DOI: 10.1212/NXG.0000000000000118. PMID: 27830187. PMCID: PMC5089441.
42. Lalonde E, Ebrahimzadeh J, Rafferty K, Richards-Yutz J, Grant R, Toorens E, et al. 2019; Molecular diagnosis of somatic overgrowth conditions: a single-center experience. Mol Genet Genomic Med. 7:e536. DOI: 10.1002/mgg3.536. PMID: 30761771. PMCID: PMC6418364.
43. Lindhurst MJ, Sapp JC, Teer JK, Johnston JJ, Finn EM, Peters K, et al. 2011; A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N Engl J Med. 365:611–9. DOI: 10.1056/NEJMoa1104017. PMID: 21793738. PMCID: PMC3170413.
44. Wieland I, Tinschert S, Zenker M. 2013; High-level somatic mosaicism of AKT1 c.49G>A mutation in skin scrapings from epidermal nevi enables non-invasive molecular diagnosis in patients with Proteus syndrome. Am J Med Genet A. 161A:889–91. DOI: 10.1002/ajmg.a.35764. PMID: 23436452.
45. Hildebrand MS, Harvey AS, Malone S, Damiano JA, Do H, Ye Z, et al. 2018; Somatic GNAQ mutation in the forme fruste of Sturge-Weber syndrome. Neurol Genet. 4:e236. DOI: 10.1212/NXG.0000000000000236. PMID: 29725622. PMCID: PMC5931068.
46. Tyburczy ME, Dies KA, Glass J, Camposano S, Chekaluk Y, Thorner AR, et al. 2015; Mosaic and intronic mutations in TSC1/TSC2 explain the majority of TSC patients with no mutation identified by conventional testing. PLoS Genet. 11:e1005637. DOI: 10.1371/journal.pgen.1005637. PMID: 26540169. PMCID: PMC4634999.
Full Text Links
  • LMO
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr