Int J Stem Cells.  2024 Feb;17(1):30-37. 10.15283/ijsc23090.

Lung Organoid on a Chip: A New Ensemble Model for Preclinical Studies

Affiliations
  • 1Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
  • 2Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
  • 3Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Korea

Abstract

The lung is a complex organ comprising a branched airway that connects the large airway and millions of terminal gas-exchange units. Traditional pulmonary biomedical research by using cell line model system have limitations such as lack of cellular heterogeneity, animal models also have limitations including ethical concern, race-to-race variations, and physiological differences found in vivo. Organoids and on-a-chip models offer viable solutions for these issues. Organoids are three-dimensional, self-organized construct composed of numerous cells derived from stem cells cultured with growth factors required for the maintenance of stem cells. On-a-chip models are biomimetic microsystems which are able to customize to use microfluidic systems to simulate blood flow in blood channels or vacuum to simulate human breathing. This review summarizes the key components and previous biomedical studies conducted on lung organoids and lung-on-a-chip models, and introduces potential future applications. Considering the importance and benefits of these model systems, we believe that the system will offer better platform to biomedical researchers on pulmonary diseases, such as emerging viral infection, progressive fibrotic pulmonary diseases, or primary or metastatic lung cancer.

Keyword

Lung; Pulmonary diseases; Organoids; Microphysiological systems

Figure

  • Fig. 1 Microphysiological systems as a viable substitute for traditional experimental models. Using microphy-siological systems can mitigate standard in vivo models and animal experiments’ drawbacks.

  • Fig. 2 Recent PubMed lung organoids or lung-on-a-chip publications. The number of articles in PubMed on lung organoids or lung-on-a-chip technology continues to increase steadily. The query used to search was “(lung organoid) or (lung on a chip).”

  • Fig. 3 Ensemble of lung organoids and organs-on-a-chip. Lung organoids derived from the patient can be effectively integrated into the organ-on-a-chip methodology, thereby facilitating disease modeling and screening of the-rapeutic drugs. The distinctive archite-cture of the on-a-chip technique facilitates the flow of media and co-cultiva-tion of diverse cell types.


Reference

References

1. Hogan BL, Barkauskas CE, Chapman HA, et al. 2014; Repair and regeneration of the respiratory system: complexity, pla-sticity, and mechanisms of lung stem cell function. Cell Stem Cell. 15:123–138. DOI: 10.1016/j.stem.2014.07.012. PMID: 25105578. PMCID: PMC4212493.
Article
2. Gkatzis K, Taghizadeh S, Huh D, Stainier DYR, Bellusci S. 2018; Use of three-dimensional organoids and lung-on-a-chip methods to study lung development, regeneration and disease. Eur Respir J. 52:1800876. DOI: 10.1183/13993003.00876-2018. PMID: 30262579.
3. Miller AJ, Dye BR, Ferrer-Torres D, et al. 2019; Generation of lung organoids from human pluripotent stem cells in vitro. Nat Protoc. 14:518–540. DOI: 10.1038/s41596-018-0104-8. PMID: 30664680. PMCID: PMC6531049.
4. Wilkinson DC, Alva-Ornelas JA, Sucre JM, et al. 2017; Develo-pment of a three-dimensional bioengineering technology to generate lung tissue for personalized disease modeling. Stem Cells Transl Med. 6:622–633. DOI: 10.5966/sctm.2016-0192. PMID: 28191779. PMCID: PMC5442826.
5. Kim J, Koo BK, Knoblich JA. 2020; Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol. 21:571–584. DOI: 10.1038/s41580-020-0259-3. PMID: 32636524. PMCID: PMC7339799.
Article
6. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. 2010; Reconstituting organ-level lung functions on a chip. Science. 328:1662–1668. DOI: 10.1126/science.1188302. PMID: 20576885. PMCID: PMC8335790.
Article
7. Clevers H. 2015; Stem cells. What is an adult stem cell? Science. 350:1319–1320. DOI: 10.1126/science.aad7016. PMID: 26659043.
8. Tian L, Gao J, Garcia IM, Chen HJ, Castaldi A, Chen YW. 2021; Human pluripotent stem cell-derived lung organoids: potential applications in development and disease modeling. Wiley Interdiscip Rev Dev Biol. 10:e399. DOI: 10.1002/wdev.399. PMID: 33145915.
9. Rock JR, Onaitis MW, Rawlins EL, et al. 2009; Basal cells as stem cells of the mouse trachea and human airway epi-thelium. Proc Natl Acad Sci U S A. 106:12771–12775. DOI: 10.1073/pnas.0906850106. PMID: 19625615. PMCID: PMC2714281.
10. Hofer M, Lutolf MP. 2021; Engineering organoids. Nat Rev Mater. 6:402–420. DOI: 10.1038/s41578-021-00279-y. PMID: 33623712. PMCID: PMC7893133.
11. Dye BR, Dedhia PH, Miller AJ, et al. 2016; A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. Elife. e19732. DOI: 10.7554/eLife.19732.023.
12. Orkin RW, Gehron P, McGoodwin EB, Martin GR, Vale-ntine T, Swarm R. 1977; A murine tumor producing a matrix of basement membrane. J Exp Med. 145:204–220. DOI: 10.1084/jem.145.1.204. PMID: 830788. PMCID: PMC2180589.
13. Aisenbrey EA, Murphy WL. 2020; Synthetic alternatives to Matrigel. Nat Rev Mater. 5:539–551. DOI: 10.1038/s41578-020-0199-8. PMID: 32953138. PMCID: PMC7500703.
14. Lee HJ, Mun S, Pham DM, Kim P. 2021; Extracellular matrix-ased hydrogels to tailoring tumor organoids. ACS Biomater Sci Eng. 7:4128–4135. DOI: 10.1021/acsbiomaterials.0c01801. PMID: 33724792.
15. Gupta N, Liu JR, Patel B, Solomon DE, Vaidya B, Gupta V. 2016; Microfluidics-based 3D cell culture models: utility in novel drug discovery and delivery research. Bioeng Transl Med. 1:63–81. DOI: 10.1002/btm2.10013. PMID: 29313007. PMCID: PMC5689508.
16. Jain A, Barrile R, van der Meer AD, et al. 2018; Primary human lung alveolus-on-a-chip model of intravascular thrombosis for assessment of therapeutics. Clin Pharmacol Ther. 03:332–340. DOI: 10.1002/cpt.742. PMID: 28516446. PMCID: PMC5693794.
17. Ding S, Zhang H, Wang X. 2021; Microfluidic-chip-integrated biosensors for lung disease models. Biosensors (Basel). 1:456. DOI: 10.3390/bios11110456. PMID: 34821672. PMCID: PMC8615803. PMID: 421e8c23c4bc42b89a793bf825a0372e.
Article
18. Munta K, Gopal PB, Vigg A. 2015; Invasive aspergillosis in near drowning nonneutropenic patient. Indian J Crit Care Med. 19:739–742. DOI: 10.4103/0972-5229.171413. PMID: 26816451. PMCID: PMC4711210.
Article
19. Blank F, Rothen-Rutishauser B, Gehr P. 2007; Dendritic cells and macrophages form a transepithelial network against foreign particulate antigens. Am J Respir Cell Mol Biol. 36:669–677. DOI: 10.1165/rcmb.2006-0234OC. PMID: 17272826.
Article
20. Lenz AG, Karg E, Brendel E, et al. 2013; Inflammatory and oxidative stress responses of an alveolar epithelial cell line to airborne zinc oxide nanoparticles at the air-liquid interface: a comparison with conventional, submerged cell-culture conditions. Biomed Res Int. 2013:652632. DOI: 10.1155/2013/652632. PMID: 23484138. PMCID: PMC3581099.
Article
21. Wu J, Wang Y, Liu G, Jia Y, Yang J, Shi J, et al. 2017; Characterization of air-liquid interface culture of A549 alveolar epithelial cells. Braz J Med Biol Res. 51:e6950. DOI: 10.1590/1414-431x20176950. PMID: 29267508. PMCID: PMC5731333. PMID: c37215df858c4f1ab21c06263b922b05.
Article
22. Upadhyay S, Palmberg L. 2018; Air-liquid interface: relevant in vitro models for investigating air pollutant-induced pulmonary toxicity. Toxicol Sci. 164:21–30. DOI: 10.1093/toxsci/kfy053. PMID: 29534242.
Article
23. Nalayanda DD, Puleo C, Fulton WB, Sharpe LM, Wang TH, Abdullah F. 2009; An open-access microfluidic model for lung-specific functional studies at an air-liquid interface. Biomed Microdevices. 11:1081–1089. DOI: 10.1007/s10544-009-9325-5. PMID: 19484389.
Article
24. Lamers MM, van der Vaart J, Knoops K, et al. 2021; An organoid-derived bronchioalveolar model for SARS-CoV-2 infec-tion of human alveolar type II-like cells. EMBO J. 40:105912. DOI: 10.15252/embj.2020105912. PMID: 33283287. PMCID: PMC7883112.
Article
25. Si L, Bai H, Rodas M, et al. 2021; A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nat Biomed Eng. 5:815–829. DOI: 10.1038/s41551-021-00718-9. PMID: 33941899. PMCID: PMC8387338.
Article
26. Suezawa T, Kanagaki S, Moriguchi K, et al. 2021; Disease modeling of pulmonary fibrosis using human pluripotent stem cell-erived alveolar organoids. Stem Cell Reports. 16:973–2987. DOI: 10.1016/j.stemcr.2021.10.015. PMID: 34798066. PMCID: PMC8693665.
27. Plebani R, Potla R, Soong M, et al. 2022; Modeling pulmonary cystic fibrosis in a human lung airway-on-a-chip. J Cyst Fibros. 21:606–615. DOI: 10.1016/j.jcf.2021.10.004. PMID: 34799298.
Article
28. Kim M, Mun H, Sung CO, et al. 2019; Patient-derived lung cancer organoids as in vitro cancer models for therapeutic scree-ning. Nat Commun. 10:3991. DOI: 10.1038/s41467-019-11867-6. PMID: 31488816. PMCID: PMC6728380. PMID: ce888df5d1284e7192c86d55942e13a0.
Article
29. Shi R, Radulovich N, Ng C, et al. 2020; Organoid cultures as preclinical models of non-small cell lung cancer. Clin Cancer Res. 26:1162–1174. DOI: 10.1158/1078-0432.CCR-19-1376. PMID: 31694835.
Article
30. Hu Y, Sui X, Song F, et al. 2021; Lung cancer organoids analyzed on microwell arrays predict drug responses of patients within a week. Nat Commun. 12:2581. DOI: 10.1038/s41467-021-22676-1. PMID: 33972544. PMCID: PMC8110811. PMID: 685fcfdd32cb48a39c362d85bdccac14.
Article
31. Park S, Kim TH, Kim SH, You S, Jung Y. 2021; Three-dimensional vascularized lung cancer-on-a-chip with lung extracellular matrix hydrogels for in vitro screening. Cancers (Basel). 13:3930. DOI: 10.3390/cancers13163930. PMID: 34439103. PMCID: PMC8393390. PMID: 0a5767bb3590433db97f8b7c2eea5497.
Article
32. Gjorevski N, Lutolf MP. 2017; Synthesis and characterization of well-defined hydrogel matrices and their application to intestinal stem cell and organoid culture. Nat Protoc. 12:263–2274. DOI: 10.1038/nprot.2017.095. PMID: 28981121.
Article
33. Mammoto A, Mammoto T. 2019; Vascular niche in lung alveolar development, homeostasis, and regeneration. Front Bioeng Biotechnol. 7:318. DOI: 10.3389/fbioe.2019.00318. PMID: 31781555. PMCID: PMC6861452. PMID: 1ec7a57009834fce9cf2eec906681d2d.
Article
34. Sobrino A, Phan DT, Datta R, et al. 2016; 3D microtumors in vitro supported by perfused vascular networks. Sci Rep. 6:31589. DOI: 10.1038/srep31589. PMID: 27549930. PMCID: PMC4994029.
Article
35. van Engeland NCA, Pollet AMAO, den Toonder JMJ, Bouten CVC, Stassen OMJA, Sahlgren CM. 2018; A biomimetic microfluidic model to study signalling between endothelial and vascular smooth muscle cells under hemodynamic conditions. Lab Chip. 18:1607–1620. DOI: 10.1039/C8LC00286J. PMID: 29756630. PMCID: PMC5972738.
Article
36. Stewart RH. 2020; A modern view of the interstitial space in health and disease. Front Vet Sci. 7:609583. DOI: 10.3389/fvets.2020.609583. PMID: 33251275. PMCID: PMC7674635. PMID: 1a3d5f081532481f93ccca1c1ebf5805.
Article
37. Li G, Fan Y, Lai Y, et al. 2020; Coronavirus infections and immune responses. J Med Virol. 92:424–432. DOI: 10.1002/jmv.25685. PMID: 31981224. PMCID: PMC7166547.
Article
38. Shrestha J, Razavi Bazaz S, Aboulkheyr Es H, et al. 2020; Lung-on-a-chip: the future of respiratory disease models and pharmacological studies. Crit Rev Biotechnol. 40:13–230. DOI: 10.1080/07388551.2019.1710458. PMID: 31906727.
Article
39. Crapo JD, Barry BE, Gehr P, Bachofen M, Weibel ER. 1982; Cell number and cell characteristics of the normal human lung. Am Rev Respir Dis. 126:332–337.
40. Barkauskas CE, Chung MI, Fioret B, Gao X, Katsura H, Hogan BL. 2017; Lung organoids: current uses and future pro-mise. Development. 144:986–997. DOI: 10.1242/dev.140103. PMID: 28292845. PMCID: PMC5358104.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr