1. Hogan BL, Barkauskas CE, Chapman HA, et al. 2014; Repair and regeneration of the respiratory system: complexity, pla-sticity, and mechanisms of lung stem cell function. Cell Stem Cell. 15:123–138. DOI:
10.1016/j.stem.2014.07.012. PMID:
25105578. PMCID:
PMC4212493.
Article
2. Gkatzis K, Taghizadeh S, Huh D, Stainier DYR, Bellusci S. 2018; Use of three-dimensional organoids and lung-on-a-chip methods to study lung development, regeneration and disease. Eur Respir J. 52:1800876. DOI:
10.1183/13993003.00876-2018. PMID:
30262579.
3. Miller AJ, Dye BR, Ferrer-Torres D, et al. 2019; Generation of lung organoids from human pluripotent stem cells
in vitro. Nat Protoc. 14:518–540. DOI:
10.1038/s41596-018-0104-8. PMID:
30664680. PMCID:
PMC6531049.
4. Wilkinson DC, Alva-Ornelas JA, Sucre JM, et al. 2017; Develo-pment of a three-dimensional bioengineering technology to generate lung tissue for personalized disease modeling. Stem Cells Transl Med. 6:622–633. DOI:
10.5966/sctm.2016-0192. PMID:
28191779. PMCID:
PMC5442826.
8. Tian L, Gao J, Garcia IM, Chen HJ, Castaldi A, Chen YW. 2021; Human pluripotent stem cell-derived lung organoids: potential applications in development and disease modeling. Wiley Interdiscip Rev Dev Biol. 10:e399. DOI:
10.1002/wdev.399. PMID:
33145915.
9. Rock JR, Onaitis MW, Rawlins EL, et al. 2009; Basal cells as stem cells of the mouse trachea and human airway epi-thelium. Proc Natl Acad Sci U S A. 106:12771–12775. DOI:
10.1073/pnas.0906850106. PMID:
19625615. PMCID:
PMC2714281.
11. Dye BR, Dedhia PH, Miller AJ, et al. 2016; A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. Elife. e19732. DOI:
10.7554/eLife.19732.023.
12. Orkin RW, Gehron P, McGoodwin EB, Martin GR, Vale-ntine T, Swarm R. 1977; A murine tumor producing a matrix of basement membrane. J Exp Med. 145:204–220. DOI:
10.1084/jem.145.1.204. PMID:
830788. PMCID:
PMC2180589.
14. Lee HJ, Mun S, Pham DM, Kim P. 2021; Extracellular matrix-ased hydrogels to tailoring tumor organoids. ACS Biomater Sci Eng. 7:4128–4135. DOI:
10.1021/acsbiomaterials.0c01801. PMID:
33724792.
15. Gupta N, Liu JR, Patel B, Solomon DE, Vaidya B, Gupta V. 2016; Microfluidics-based 3D cell culture models: utility in novel drug discovery and delivery research. Bioeng Transl Med. 1:63–81. DOI:
10.1002/btm2.10013. PMID:
29313007. PMCID:
PMC5689508.
16. Jain A, Barrile R, van der Meer AD, et al. 2018; Primary human lung alveolus-on-a-chip model of intravascular thrombosis for assessment of therapeutics. Clin Pharmacol Ther. 03:332–340. DOI:
10.1002/cpt.742. PMID:
28516446. PMCID:
PMC5693794.
19. Blank F, Rothen-Rutishauser B, Gehr P. 2007; Dendritic cells and macrophages form a transepithelial network against foreign particulate antigens. Am J Respir Cell Mol Biol. 36:669–677. DOI:
10.1165/rcmb.2006-0234OC. PMID:
17272826.
Article
20. Lenz AG, Karg E, Brendel E, et al. 2013; Inflammatory and oxidative stress responses of an alveolar epithelial cell line to airborne zinc oxide nanoparticles at the air-liquid interface: a comparison with conventional, submerged cell-culture conditions. Biomed Res Int. 2013:652632. DOI:
10.1155/2013/652632. PMID:
23484138. PMCID:
PMC3581099.
Article
22. Upadhyay S, Palmberg L. 2018; Air-liquid interface: relevant in vitro models for investigating air pollutant-induced pulmonary toxicity. Toxicol Sci. 164:21–30. DOI:
10.1093/toxsci/kfy053. PMID:
29534242.
Article
23. Nalayanda DD, Puleo C, Fulton WB, Sharpe LM, Wang TH, Abdullah F. 2009; An open-access microfluidic model for lung-specific functional studies at an air-liquid interface. Biomed Microdevices. 11:1081–1089. DOI:
10.1007/s10544-009-9325-5. PMID:
19484389.
Article
24. Lamers MM, van der Vaart J, Knoops K, et al. 2021; An organoid-derived bronchioalveolar model for SARS-CoV-2 infec-tion of human alveolar type II-like cells. EMBO J. 40:105912. DOI:
10.15252/embj.2020105912. PMID:
33283287. PMCID:
PMC7883112.
Article
26. Suezawa T, Kanagaki S, Moriguchi K, et al. 2021; Disease modeling of pulmonary fibrosis using human pluripotent stem cell-erived alveolar organoids. Stem Cell Reports. 16:973–2987. DOI:
10.1016/j.stemcr.2021.10.015. PMID:
34798066. PMCID:
PMC8693665.
32. Gjorevski N, Lutolf MP. 2017; Synthesis and characterization of well-defined hydrogel matrices and their application to intestinal stem cell and organoid culture. Nat Protoc. 12:263–2274. DOI:
10.1038/nprot.2017.095. PMID:
28981121.
Article
35. van Engeland NCA, Pollet AMAO, den Toonder JMJ, Bouten CVC, Stassen OMJA, Sahlgren CM. 2018; A biomimetic microfluidic model to study signalling between endothelial and vascular smooth muscle cells under hemodynamic conditions. Lab Chip. 18:1607–1620. DOI:
10.1039/C8LC00286J. PMID:
29756630. PMCID:
PMC5972738.
Article
38. Shrestha J, Razavi Bazaz S, Aboulkheyr Es H, et al. 2020; Lung-on-a-chip: the future of respiratory disease models and pharmacological studies. Crit Rev Biotechnol. 40:13–230. DOI:
10.1080/07388551.2019.1710458. PMID:
31906727.
Article
39. Crapo JD, Barry BE, Gehr P, Bachofen M, Weibel ER. 1982; Cell number and cell characteristics of the normal human lung. Am Rev Respir Dis. 126:332–337.
40. Barkauskas CE, Chung MI, Fioret B, Gao X, Katsura H, Hogan BL. 2017; Lung organoids: current uses and future pro-mise. Development. 144:986–997. DOI:
10.1242/dev.140103. PMID:
28292845. PMCID:
PMC5358104.
Article