Int J Stem Cells.  2022 Feb;15(1):60-69. 10.15283/ijsc21190.

Engineering the Extracellular Matrix for Organoid Culture

Affiliations
  • 1Department of Physiology, Yonsei University College of Medicine, Seoul, Korea

Abstract

Organoids show great potential in clinical translational research owing to their intriguing properties to represent a near physiological model for native tissues. However, the dependency of organoid generation on the use of poorly defined matrices has hampered their clinical application. Current organoid culture systems mostly reply on biochemical signals provided by medium compositions and cell-cell interactions to control growth. Recent studies have highlighted the importance of the extracellular matrix (ECM) composition, cell-ECM interactions, and mechanical signals for organoid expansion and differentiation. Thus, several hydrogel systems prepared using natural or synthetic-based materials have been designed to recreate the stem cell niche in vitro, providing biochemical, biophysical, and mechanical signals. In this review, we discuss how recapitulating multiple aspects of the tissue-specific environment through designing and applying matrices could contribute to accelerating the translation of organoid technology from the laboratory to therapeutic and pharmaceutical applications.

Keyword

Stem Cell Niche; Organoid Engineering; Extracellular Matrix; Hydrogel

Cited by  1 articles

Lo and Behold, the Lab-Grown Organs Have Arrived!
Jaesang Kim
Int J Stem Cells. 2022;15(1):1-2.    doi: 10.15283/ijsc22026.


Reference

References

1. Lancaster MA, Knoblich JA. 2014; Organogenesis in a dish: modeling development and disease using organoid technologies. Science. 345:1247125. DOI: 10.1126/science.1247125. PMID: 25035496.
Article
2. Simian M, Bissell MJ. 2017; Organoids: a historical perspective of thinking in three dimensions. J Cell Biol. 216:31–40. DOI: 10.1083/jcb.201610056. PMID: 28031422. PMCID: PMC5223613.
Article
3. Kim J, Koo BK, Knoblich JA. 2020; Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol. 21:571–584. DOI: 10.1038/s41580-020-0259-3. PMID: 32636524. PMCID: PMC7339799.
Article
4. Hofer M, Lutolf MP. 2021; Engineering organoids. Nat Rev Mater. 6:402–420. DOI: 10.1038/s41578-021-00279-y. PMID: 33623712. PMCID: PMC7893133.
Article
5. Kleinman HK, Martin GR. 2005; Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol. 15:378–386. DOI: 10.1016/j.semcancer.2005.05.004. PMID: 15975825.
Article
6. Corning Incorporated. 2019. Corning Matrigel Matrix [Internet]. Corning;Corning (NY): Available from: https://www.corning.com/catalog/cls/documents/faqs/CLS-DL-CC-026.pdf. cited 2021 May 7.
7. Vukicevic S, Kleinman HK, Luyten FP, Roberts AB, Roche NS, Reddi AH. 1992; Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp Cell Res. 202:1–8. DOI: 10.1016/0014-4827(92)90397-Q. PMID: 1511725.
Article
8. Gillette KM, Forbes K, Sehgal I. 2003; Detection of matrix metalloproteinases (MMP), tissue inhibitor of metalloproteinase-2, urokinase and plasminogen activator inhibitor-1 within matrigel and growth factor-reduced matrigel basement mem-brane. Tumori. 89:421–425. DOI: 10.1177/030089160308900415. PMID: 14606648.
Article
9. Gattazzo F, Urciuolo A, Bonaldo P. 2014; Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta. 1840:2506–2519. DOI: 10.1016/j.bbagen.2014.01.010. PMID: 24418517. PMCID: PMC4081568.
Article
10. Vining KH, Mooney DJ. 2017; Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Biol. 18:728–742. DOI: 10.1038/nrm.2017.108. PMID: 29115301. PMCID: PMC5803560.
Article
11. Hynes RO. 2009; The extracellular matrix: not just pretty fibrils. Science. 326:1216–1219. DOI: 10.1126/science.1176009. PMID: 19965464. PMCID: PMC3536535.
Article
12. Jabaji Z, Sears CM, Brinkley GJ, Lei NY, Joshi VS, Wang J, Lewis M, Stelzner M, Martín MG, Dunn JC. 2013; Use of collagen gel as an alternative extracellular matrix for the in vitro and in vivo growth of murine small intestinal epithelium. Tissue Eng Part C Methods. 19:961–969. DOI: 10.1089/ten.tec.2012.0710. PMID: 23566043. PMCID: PMC3833386.
Article
13. Sachs N, Tsukamoto Y, Kujala P, Peters PJ, Clevers H. 2017; Intestinal epithelial organoids fuse to form self-organizing tubes in floating collagen gels. Development. 144:1107–1112. DOI: 10.1242/dev.143933. PMID: 28292848.
Article
14. Jee JH, Lee DH, Ko J, Hahn S, Jeong SY, Kim HK, Park E, Choi SY, Jeong S, Lee JW, Cho HJ, Kwon MS, Yoo J. 2019; Development of collagen-based 3D matrix for gastrointestinal tract-derived organoid culture. Stem Cells Int. 2019:8472712. DOI: 10.1155/2019/8472712. PMID: 31312220. PMCID: PMC6595382.
Article
15. Cruz NM, Song X, Czerniecki SM, Gulieva RE, Churchill AJ, Kim YK, Winston K, Tran LM, Diaz MA, Fu H, Finn LS, Pei Y, Himmelfarb J, Freedman BS. 2017; Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease. Nat Mater. 16:1112–1119. DOI: 10.1038/nmat4994. PMID: 28967916. PMCID: PMC5936694.
Article
16. Buchmann B, Engelbrecht LK, Fernandez P, Hutterer FP, Raich MK, Scheel CH, Bausch AR. 2021; Mechanical plasticity of collagen directs branch elongation in human mammary gland organoids. Nat Commun. 12:2759. DOI: 10.1038/s41467-021-22988-2. PMID: 33980857. PMCID: PMC8115695. PMID: ca6fd98434244dba96daeb649f0b2389.
Article
17. Capeling MM, Czerwinski M, Huang S, Tsai YH, Wu A, Nagy MS, Juliar B, Sundaram N, Song Y, Han WM, Takayama S, Alsberg E, Garcia AJ, Helmrath M, Putnam AJ, Spence JR. 2019; Nonadhesive alginate hydrogels support growth of pluripotent stem cell-derived intestinal orga-noids. Stem Cell Reports. 12:381–394. DOI: 10.1016/j.stemcr.2018.12.001. PMID: 30612954. PMCID: PMC6373433.
Article
18. Patel SN, Ishahak M, Chaimov D, Velraj A, LaShoto D, Hagan DW, Buchwald P, Phelps EA, Agarwal A, Stabler CL. 2021; Organoid microphysiological system preserves pancreatic islet function within 3D matrix. Sci Adv. 7:ea–ba5515. DOI: 10.1126/sciadv.aba5515. PMID: 33579705. PMCID: PMC7880596.
Article
19. Curvello R, Alves D, Abud HE, Garnier G. 2021; A thermo-responsive collagen-nanocellulose hydrogel for the growth of intestinal organoids. Mater Sci Eng C Mater Biol Appl. 124:112051. DOI: 10.1016/j.msec.2021.112051. PMID: 33947545.
Article
20. Sokol ES, Miller DH, Breggia A, Spencer KC, Arendt LM, Gupta PB. 2016; Growth of human breast tissues from patient cells in 3D hydrogel scaffolds. Breast Cancer Res. 18:19. DOI: 10.1186/s13058-016-0677-5. PMID: 26926363. PMCID: PMC4772689.
Article
21. Homan KA, Gupta N, Kroll KT, Kolesky DB, Skylar-Scott M, Miyoshi T, Mau D, Valerius MT, Ferrante T, Bonventre JV, Lewis JA, Morizane R. 2019; Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat Methods. 16:255–262. DOI: 10.1038/s41592-019-0325-y. PMID: 30742039. PMCID: PMC6488032.
Article
22. Broguiere N, Isenmann L, Hirt C, Ringel T, Placzek S, Cavalli E, Ringnalda F, Villiger L, Züllig R, Lehmann R, Rogler G, Heim MH, Schüler J, Zenobi-Wong M, Schwank G. 2018; Growth of epithelial organoids in a defined hydrogel. Adv Mater. 30:e1801621. DOI: 10.1002/adma.201801621. PMID: 30203567.
Article
23. Jin Y, Kim J, Lee JS, Min S, Kim S, Ahn DH, Kim YG, Cho SW. 2018; Vascularized liver organoids generated using induced hepatic tissue and dynamic liver-specific microenvironment as a drug testing platform. Adv Funct Mater. 28:1801954. DOI: 10.1002/adfm.201801954.
Article
24. Jin Y, Shahriari D, Jeon EJ, Park S, Choi YS, Back J, Lee H, Anikeeva P, Cho SW. 2021; Functional skeletal muscle regeneration with thermally drawn porous fibers and reprogrammed muscle progenitors for volumetric muscle injury. Adv Mater. 33:e2007946. DOI: 10.1002/adma.202007946. PMID: 33605006.
Article
25. Liao J, Xu B, Zhang R, Fan Y, Xie H, Li X. 2020; Applications of decellularized materials in tissue engineering: advantages, drawbacks and current improvements, and future perspectives. J Mater Chem B. 8:10023–10049. DOI: 10.1039/D0TB01534B. PMID: 33053004.
Article
26. Saldin LT, Cramer MC, Velankar SS, White LJ, Badylak SF. 2017; Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater. 49:1–15. DOI: 10.1016/j.actbio.2016.11.068. PMID: 27915024. PMCID: PMC5253110.
Article
27. Gilpin A, Yang Y. 2017; Decellularization strategies for regenerative medicine: from processing techniques to appli-cations. Biomed Res Int. 2017:9831534. DOI: 10.1155/2017/9831534. PMID: 28540307. PMCID: PMC5429943.
Article
28. Simsa R, Rothenbücher T, Gürbüz H, Ghosheh N, Emneus J, Jenndahl L, Kaplan DL, Bergh N, Serrano AM, Fogelstrand P. 2021; Brain organoid formation on decellularized porcine brain ECM hydrogels. PLoS One. 16:e0245685. DOI: 10.1371/journal.pone.0245685. PMID: 33507989. PMCID: PMC7842896. PMID: 27ddc35147c349cd802f99a4f0c700ec.
Article
29. Cho AN, Jin Y, An Y, Kim J, Choi YS, Lee JS, Kim J, Choi WY, Koo DJ, Yu W, Chang GE, Kim DY, Jo SH, Kim J, Kim SY, Kim YG, Kim JY, Choi N, Cheong E, Kim YJ, Je HS, Kang HC, Cho SW. 2021; Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat Commun. 12:4730. DOI: 10.1038/s41467-021-24775-5. PMID: 34354063. PMCID: PMC8342542. PMID: 4baaa6ea520348a5bdc13ee2f2a1412c.
Article
30. Schwartz DM, Pehlivaner Kara MO, Goldstein AM, Ott HC, Ekenseair AK. 2017; Spray delivery of intestinal organoids to reconstitute epithelium on decellularized native extracellular matrix. Tissue Eng Part C Methods. 23:565–573. DOI: 10.1089/ten.tec.2017.0269. PMID: 28756760. PMCID: PMC5592844.
Article
31. Giobbe GG, Crowley C, Luni C, Campinoti S, Khedr M, Kretzschmar K, De Santis MM, Zambaiti E, Michielin F, Meran L, Hu Q, van Son G, Urbani L, Manfredi A, Giomo M, Eaton S, Cacchiarelli D, Li VSW, Clevers H, Bonfanti P, Elvassore N, De Coppi P. 2019; Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture. Nat Commun. 10:5658. DOI: 10.1038/s41467-019-13605-4. PMID: 31827102. PMCID: PMC6906306. PMID: a28b06f5539f456b97162079de3a5a5a.
Article
32. Bi H, Ye K, Jin S. 2020; Proteomic analysis of decellularized pancreatic matrix identifies collagen V as a critical regulator for islet organogenesis from human pluripotent stem cells. Biomaterials. 233:119673. DOI: 10.1016/j.biomaterials.2019.119673. PMID: 31866049.
Article
33. Bi H, Karanth SS, Ye K, Stein R, Jin S. 2020; Decellularized tissue matrix enhances self-assembly of islet organoids from pluripotent stem cell differentiation. ACS Biomater Sci Eng. 6:4155–4165. DOI: 10.1021/acsbiomaterials.0c00088. PMID: 33463310.
Article
34. Dorgau B, Felemban M, Hilgen G, Kiening M, Zerti D, Hunt NC, Doherty M, Whitfield P, Hallam D, White K, Ding Y, Krasnogor N, Al-Aama J, Asfour HZ, Sernagor E, Lako M. 2019; Decellularised extracellular matrix-derived peptides from neural retina and retinal pigment epithelium enhance the expression of synaptic markers and light responsiveness of human pluripotent stem cell derived retinal organoids. Biomaterials. 199:63–75. DOI: 10.1016/j.biomaterials.2019.01.028. PMID: 30738336.
Article
35. Vermeulen M, Del Vento F, Kanbar M, Pyr Dit Ruys S, Vertommen D, Poels J, Wyns C. 2019; Generation of organized porcine testicular organoids in solubilized hydrogels from decellularized extracellular matrix. Int J Mol Sci. 20:5476. DOI: 10.3390/ijms20215476. PMID: 31684200. PMCID: PMC6862040.
Article
36. Francés-Herrero E, Juárez-Barber E, Campo H, López-Martínez S, de Miguel-Gómez L, Faus A, Pellicer A, Ferrero H, Cervelló I. 2021; Improved models of human endometrial organoids based on hydrogels from decellularized endometrium. J Pers Med. 11:504. DOI: 10.3390/jpm11060504. PMID: 34205034. PMCID: PMC8229407. PMID: e3738e6c805b4812807a4e93f8a15c60.
Article
37. Cruz-Acuña R, Quirós M, Huang S, Siuda D, Spence JR, Nusrat A, García AJ. 2018; PEG-4MAL hydrogels for human organoid generation, culture, and in vivo delivery. Nat Protoc. 13:2102–2119. Erratum in: Nat Protoc 2019;14:2258. DOI: 10.1038/s41596-018-0036-3. PMID: 30190557. PMCID: PMC7240347.
Article
38. Hoang P, Kowalczewski A, Sun S, Winston TS, Archilla AM, Lemus SM, Ercan-Sencicek AG, Gupta AR, Liu W, Kontaridis MI, Amack JD, Ma Z. 2021; Engineering spatial-organized cardiac organoids for developmental toxicity testing. Stem Cell Reports. 16:1228–1244. DOI: 10.1016/j.stemcr.2021.03.013. PMID: 33891865. PMCID: PMC8185451.
Article
39. Cruz-Acuña R, Quirós M, Farkas AE, Dedhia PH, Huang S, Siuda D, García-Hernández V, Miller AJ, Spence JR, Nusrat A, García AJ. 2017; Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nat Cell Biol. 19:1326–1335. DOI: 10.1038/ncb3632. PMID: 29058719. PMCID: PMC5664213.
Article
40. Hernandez-Gordillo V, Kassis T, Lampejo A, Choi G, Gamboa ME, Gnecco JS, Brown A, Breault DT, Carrier R, Griffith LG. 2020; Fully synthetic matrices for in vitro culture of primary human intestinal enteroids and endometrial organoids. Biomaterials. 254:120125. DOI: 10.1016/j.biomaterials.2020.120125. PMID: 32502894. PMCID: PMC8005336.
Article
41. Gjorevski N, Sachs N, Manfrin A, Giger S, Bragina ME, Ordóñez-Morán P, Clevers H, Lutolf MP. 2016; Designer matrices for intestinal stem cell and organoid culture. Nature. 539:560–564. DOI: 10.1038/nature20168. PMID: 27851739.
Article
42. Gjorevski N, Lutolf MP. 2017; Synthesis and characterization of well-defined hydrogel matrices and their application to intestinal stem cell and organoid culture. Nat Protoc. 12:2263–2274. DOI: 10.1038/nprot.2017.095. PMID: 28981121.
Article
43. Klotz BJ, Oosterhoff LA, Utomo L, Lim KS, Vallmajo-Martin Q, Clevers H, Woodfield TBF, Rosenberg AJWP, Malda J, Ehrbar M, Spee B, Gawlitta D. 2019; A versatile biosynthetic hydrogel platform for engineering of tissue analogues. Adv Healthc Mater. 8:e1900979. DOI: 10.1002/adhm.201900979. PMID: 31402634. PMCID: PMC7116179.
Article
44. Wang Y, Liu H, Zhang M, Wang H, Chen W, Qin J. 2020; One-step synthesis of composite hydrogel capsules to support liver organoid generation from hiPSCs. Biomater Sci. 8:5476–5488. DOI: 10.1039/D0BM01085E. PMID: 32914807.
Article
45. Dye BR, Youngblood RL, Oakes RS, Kasputis T, Clough DW, Spence JR, Shea LD. 2020; Human lung organoids develop into adult airway-like structures directed by physico-chemical biomaterial properties. Biomaterials. 234:119757. DOI: 10.1016/j.biomaterials.2020.119757. PMID: 31951973. PMCID: PMC6996062.
Article
46. Davoudi Z, Peroutka-Bigus N, Bellaire B, Wannemuehler M, Barrett TA, Narasimhan B, Wang Q. 2018; Intestinal organoids containing poly(lactic-co-glycolic acid) nanoparticles for the treatment of inflammatory bowel diseases. J Biomed Mater Res A. 106:876–886. DOI: 10.1002/jbm.a.36305. PMID: 29226615. PMCID: PMC5826879.
Article
47. Dosh RH, Jordan-Mahy N, Sammon C, Le Maitre CL. 2019; Use of l-pNIPAM hydrogel as a 3D-scaffold for intestinal crypts and stem cell tissue engineering. Biomater Sci. 7:4310–4324. DOI: 10.1039/C9BM00541B. PMID: 31410428.
Article
48. Kumar SV, Er PX, Lawlor KT, Motazedian A, Scurr M, Ghobrial I, Combes AN, Zappia L, Oshlack A, Stanley EG, Little MH. 2019; Kidney micro-organoids in suspension culture as a scalable source of human pluripotent stem cell-derived kidney cells. Development. 146:dev172361. DOI: 10.1242/dev.172361. PMID: 30846463. PMCID: PMC6432662.
Article
49. Shin W, Ambrosini YM, Shin YC, Wu A, Min S, Koh D, Park S, Kim S, Koh H, Kim HJ. 2020; Robust formation of an epithelial layer of human intestinal organoids in a polydimethylsiloxane-based gut-on-a-chip microdevice. Front Med Technol. 2:2. DOI: 10.3389/fmedt.2020.00002. PMID: 33532747. PMCID: PMC7849371.
Article
50. Lancaster MA, Corsini NS, Wolfinger S, Gustafson EH, Phillips AW, Burkard TR, Otani T, Livesey FJ, Knoblich JA. 2017; Guided self-organization and cortical plate formation in human brain organoids. Nat Biotechnol. 35:659–666. Erratum in: Nat Biotechnol 2018;36:1016. DOI: 10.1038/nbt.3906. PMID: 28562594. PMCID: PMC5824977.
Article
51. Ravichandran A, Murekatete B, Moedder D, Meinert C, Bray LJ. 2021; Photocrosslinkable liver extracellular matrix hydrogels for the generation of 3D liver microenvironment models. Sci Rep. 11:15566. DOI: 10.1038/s41598-021-94990-z. PMID: 34330947. PMCID: PMC8324893. PMID: 491fa025fe4b4c02beea3ed0e7195ee5.
Article
52. Lee JS, Choi YS, Lee JS, Jeon EJ, An S, Lee MS, Yang HS, Cho SW. 2022; Mechanically-reinforced and highly adhesive decellularized tissue-derived hydrogel for efficient tissue repair. Chem Eng J. 427:130926. DOI: 10.1016/j.cej.2021.130926.
Article
53. Petrou CL, D'Ovidio TJ, Bölükbas DA, Tas S, Brown RD, Allawzi A, Lindstedt S, Nozik-Grayck E, Stenmark KR, Wagner DE, Magin CM. 2020; Clickable decellularized extracellular matrix as a new tool for building hybrid-hydrogels to model chronic fibrotic diseases in vitro. J Mater Chem B. 8:6814–6826. DOI: 10.1039/D0TB00613K. PMID: 32343292.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr