3. Choi BJ, Park JH, Choe BM, Han SH, Kim SH. Factors influencing anxiety and depression in breast cancer patients treated with surgery. J Korean Soc Biol Ther Psychiatry. 2011; 17(1):87–95.
4. Nam SJ. Screening and diagnosis for breast cancers. J Korean Med Assoc. 2009; 52(10):946–951.
Article
5. Jung SS, You YK, Park CH, Kim IC. Recent trends of breast cancer treatment in Korea. J Korean Surg Soc. 1991; 41(6):717–726.
6. Kim DD, Kim JH, Choi KW. The clinicopathologic factors affecting the false negativity of fine needle aspiration cytology (FNAC) in breast Cancer. J Korean Surg Soc. 2002; 62(5):403–407.
7. Layfield LJ, Glasgow BJ, Cramer H. Fine-needle aspiration in the management of breast masses. Pathol Annu. 1989; 24 Pt 2:23–62.
8. Oh BH, Park YS, Sung CW, Kim CS. Diagnostic value of ultrasound-guided fine needle aspiration cytology by a endocrine surgeon. Korean J Endocr Surg. 2008; 8(3):189–193.
Article
9. Hong SW. Fine needle aspiration cytology of thyroid follicular proliferative lesions. Korean J Endocr Surg. 2008; 8(3):159–166.
Article
10. Cho SJ, Kang SH. Industrial applications of machine learning (artificial intelligence). IE Mag. 2016; 23(2):34–38.
11. van der Laan MJ, Polley EC, Hubbard AE. Super learner. Stat Appl Genet Mol Biol. 2007; 6:Article25.
Article
12. Lim JS, Oh YS, Lim DH. Bagging support vector machine for improving breast cancer classification. J Health Info Stat. 2014; 39(1):15–24.
13. Krawczyk B, Galar M, Jelen L, Herrera F. Evolutionary undersampling boosting for imbalanced classification of breast cancer malignancy. Appl Soft Comput. 2016; 38:714–726.
Article
14. Huang MW, Chen CW, Lin WC, Ke SW, Tsai CF. SVM and SVM Ensembles in Breast Cancer Prediction. PLoS One. 2017; 12(1):e0161501.
Article
15. Nagi S, Bhattacharyya DK. Classification of microarray cancer data using ensemble approach. Netw Model Anal Health Inform Bioinform. 2013; 2(3):159–173.
Article
16. UCI Machine Learning Repository [Internet]. Oakland (CA): University of California, Center for Machine Learning and Intelligent Systems;c2018. cited at 2018 Aug 10. Available from:
http://archive.ics.uci.edu/ml.
18. Park JH, Jung YS, Jung Y. Factors influencing posttraumatic growth in survivors of breast cancer. J Korean Acad Nurs. 2016; 46(3):454–462.
Article
19. Montazeri M, Montazeri M, Montazeri M, Beigzadeh A. Machine learning models in breast cancer survival prediction. Technol Health Care. 2016; 24(1):31–42.
Article
20. Hsieh SL, Hsieh SH, Cheng PH, Chen CH, Hsu KP, Lee IS, et al. Design ensemble machine learning model for breast cancer diagnosis. J Med Syst. 2012; 36(5):2841–2847.
Article