Korean J Orthod.  2023 Nov;53(6):420-430. 10.4041/kjod23.035.

Biomechanical analysis for different mandibular total distalization methods with clear aligners: A finite element study

Affiliations
  • 1Department of Orthodontics, Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Korea
  • 2Department of Orthodontics, Pusan National University Hospital, Busan, Korea
  • 3Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
  • 4Department of Orthodontics, Saint Louis University, Saint Louis, Mo, USA
  • 5Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea

Abstract


Objective
The purpose of this finite element method (FEM) study was to analyze the biomechanical differences and tooth displacement patterns according to the traction direction, methods, and sites for total distalization of the mandibular dentition using clear aligner treatment (CAT).
Methods
A finite element analysis was performed on four FEM models using different traction methods (via a precision cut hook or button) and traction sites (mandibular canine or first premolar). A distalization force of 1.5 N was applied to the traction site by changing the direction from –30 to +30° to the occlusal plane. The initial tooth displacement and von Mises stress on the clear aligners were analyzed.
Results
All CAT-based total distalization groups showed an overall trend of clockwise or counterclockwise rotation of the occlusal plane as the force direction varied. Mesiodistal tipping of individual teeth was more prominent than that of bodily movements. The initial displacement pattern of the mandibular teeth was more predominant based on the traction site than on the traction method. The elastic deformation of clear aligners is attributed to unintentional lingual tipping or extrusion of the mandibular anterior teeth.
Conclusions
The initial tooth displacement can vary according to different distalization strategies for CAT-based total distalization. Discreet application and biomechanical understanding of traction sites and directions are necessary for appropriate mandibular total distalization.

Keyword

Finite element method; Clear aligner; Distalization

Figure

  • Figure 1 Four finite element method models. A, Group C1: distalization with a button on canine; B, Group C2: distalization with a precision cut hook on canine; C, Group P1: distalization with a button on first premolar; D, Group P2: distalization with a precision cut hook on first premolar.

  • Figure 2 Direction and magnitude of the distalization force. A, lateral and B, occlusal view.

  • Figure 3 Displacement pattern of dentition. A, B, Displacement (μm) of the dentition for +30°and –30° traction in Group C1, respectively. C, D, Displacement (μm) of the dentition for +30° and –30° traction in Group C2, respectively. E, F, Displacement (μm) of the dentition for +30° and –30° traction in Group P1, respectively. G, H, Displacement (μm) of the dentition for +30° and –30° traction in Group P2, respectively.

  • Figure 4 Pattern of tooth movement at the mandibular central incisor. A, Crown-centered medio-distal displacement (μm); B, crown-centered bucco-lingual displacement (μm); C, crown-centered apico-coronal displacement (μm); D, buccolingual inclination change (°); E, mesiodistal inclination change (°); F, occlusal rotation (°).

  • Figure 5 Pattern of tooth movement at the mandibular canine. A, Crown-centered medio-distal displacement (μm); B, crown-centered bucco-lingual displacement (μm); C, crown-centered apico-coronal displacement (μm); D, buccolingual inclination change (°); E, mesiodistal inclination change (°); F, occlusal rotation (°).

  • Figure 6 Pattern of tooth movement at mandibular first premolar. A, Crown-centered medio- distal displacement (μm); B, crown-centered bucco-lingual displacement (μm); C, crown-centered apico-coronal displacement (μm); D, buccolingual inclination change (°); E, mesiodistal inclination change (°); F, occlusal rotation (°).

  • Figure 7 Pattern of tooth movement at mandibular first molar. A, Crown-centered medio distal displacement (μm); B, crown-centered bucco-lingual displacement (μm); C, crown-centered apico-coronal displacement (μm); D, buccolingual inclination change (°); E, mesiodistal inclination change (°); F, occlusal rotation (°).

  • Figure 8 Total displacement pattern of aligners. A, B, Total displacement (μm) of the dentition for +30° and –30° traction in Group C1, respectively. C, D, Total displacement (μm) of the dentition for +30° and –30° traction in Group C2, respectively. E, F, Total displacement (μm) of the dentition for +30° and –30° traction in Group P1, respectively. G, H, Total displacement (μm) of the dentition for +30° and –30° traction in Group P2, respectively.

  • Figure 9 Elastic strain (mm/mm) of clear aligners. A, B, For +30° and –30° traction in Group C1, respectively. C, D, For +30° and –30° traction in Group C2, respectively. E, F, For +30° and –30° traction in Group P1, respectively. G, H, For +30° and –30° traction in Group P2, respectively.

  • Figure 10 Force diagram showing aligner deformation during distal retraction with a precision cut hook. A, The force system with –30° posteroinferior distalization force on a precision cut hook (black dot: center of resistance of mandibular dentition, red arrow: distalization force). B, Equivalent force system assuming CA as an ideal rigid body. Rotation occurred following the translation in the whole. C, Mesiodistal tipping of individual tooth rather than bodily movement occurred with lingual tipping and extrusion of the anterior teeth due to the deformation as the aligner is an elastic body (black dashed arrow: deformation of CA due to distalization force, black lined arrow: lingual tipping of the anterior teeth). CA, clear aligner.


Reference

1. Proffit W, Fields H, Larson B, Sarver D. 2018. Contemporary orthodontics. 6th ed. Elsevier;Maryland Height: https://shop.elsevier.com/books/contemporary-orthodontics/proffit/978-0-323-54387-3. DOI: 10.1053/j.sodo.2018.10.005.
2. Baik H. 2007; Limitations in orthopedic and camouflage treatment for Class III malocclusion. Semin Orthod. 13:158–74. https://doi.org/10.1053/j.sodo.2007.05.004. DOI: 10.1053/j.sodo.2007.05.004.
Article
3. Burns NR, Musich DR, Martin C, Razmus T, Gunel E, Ngan P. 2010; Class III camouflage treatment: what are the limits? Am J Orthod Dentofacial Orthop. 137:9.e1–9.e13. discussion 9–11. https://doi.org/10.1016/j.ajodo.2009.05.017. DOI: 10.1016/j.ajodo.2009.05.017. PMID: 20122418.
Article
4. Ngan P, Moon W. 2015; Evolution of Class III treatment in orthodontics. Am J Orthod Dentofacial Orthop. 148:22–36. https://doi.org/10.1016/j.ajodo.2015.04.012. DOI: 10.1016/j.ajodo.2015.04.012. PMID: 26124025.
Article
5. Kim YH. 1987; Anterior openbite and its treatment with multiloop edgewise archwire. Angle Orthod. 57:290–321. https://pubmed.ncbi.nlm.nih.gov/3479033/. DOI: 10.1043/0003-3219(1987)057<0290:AOAITW>2.0.CO;2. PMID: 3479033.
6. Ngan P, Sung JH. Nanda R, editor. 2015. Treatment strategies for developing and nondeveloping Class III malocclusions. Esthetics and biomechanics in orthodontics. 2nd ed. WB Saunders;Philadelphia: https://doi.org/10.1016/B978-1-4557-5085-6.00014-X. DOI: 10.1016/B978-1-4557-5085-6.00014-X.
Article
7. Roberts WE, Viecilli RF, Chang C, Katona TR, Paydar NH. 2015; Biology of biomechanics: finite element analysis of a statically determinate system to rotate the occlusal plane for correction of a skeletal Class III open-bite malocclusion. Am J Orthod Dentofacial Orthop. 148:943–55. https://doi.org/10.1016/j.ajodo.2015.10.002. DOI: 10.1016/j.ajodo.2015.10.002. PMID: 26672700.
Article
8. Chae JM, Park JH, Kojima Y, Tai K, Kook YA, Kyung HM. 2019; Biomechanical analysis for total distalization of the mandibular dentition: a finite element study. Am J Orthod Dentofacial Orthop. 155:388–97. https://doi.org/10.1016/j.ajodo.2018.05.014. DOI: 10.1016/j.ajodo.2018.05.014. PMID: 30826042.
Article
9. Kim TW, Echarri P. 2007; Clear aligner: an efficient, esthetic, and comfortable option for an adult patient. World J Orthod. 8:13–8. https://pubmed.ncbi.nlm.nih.gov/17373221/. PMID: 17373221.
10. Shalish M, Cooper-Kazaz R, Ivgi I, Canetti L, Tsur B, Bachar E, et al. 2012; Adult patients' adjustability to orthodontic appliances. Part I: a comparison between Labial, Lingual, and Invisalign™. Eur J Orthod. 34:724–30. https://doi.org/10.1093/ejo/cjr086. DOI: 10.1093/ejo/cjr086. PMID: 21750242.
Article
11. Yezdani AA. 2015; Transparent aligners: an invisible approach to correct mild skeletal class III malocclusion. J Pharm Bioallied Sci. 7(Suppl 1):S301–6. https://doi.org/10.4103/0975-7406.155965. DOI: 10.4103/0975-7406.155965. PMID: 26015738. PMCID: PMC4439698. PMID: 9a644e12fb20423f9abcb4721e4f9f55.
Article
12. Nanda R, Uribe FA, Yadav S. 2020. Temporary anchorage devices in orthodontics. 2nd ed. Elsevier;Maryland Heights: https://shop.elsevier.com/books/temporary-anchorage-devices-in-orthodontics/nanda/978-0-323-60933-3. DOI: 10.1016/c2017-0-02979-8.
13. Rota E, Parrini S, Malekian K, Cugliari G, Mampieri G, Deregibus A, et al. 2022; Lower molar distalization using clear aligners: bodily movement or uprighting? A preliminary study. Appl Sci. 12:7123. https://doi.org/10.3390/app12147123. DOI: 10.3390/app12147123. PMID: 0dd996d1423c4b55b612e97b3728fd33.
14. Gomez JP, Peña FM, Martínez V, Giraldo DC, Cardona CI. 2015; Initial force systems during bodily tooth movement with plastic aligners and composite attachments: a three-dimensional finite element analysis. Angle Orthod. 85:454–60. https://doi.org/10.2319/050714-330.1. DOI: 10.2319/050714-330.1. PMID: 25181252. PMCID: PMC8612436.
15. Upadhyay M, Arqub SA. 2022; Biomechanics of clear aligners: hidden truths & first principles. J World Fed Orthod. 11:12–21. https://doi.org/10.1016/j.ejwf.2021.11.002. DOI: 10.1016/j.ejwf.2021.11.002. PMID: 34965910.
Article
16. Liu L, Zhan Q, Zhou J, Kuang Q, Yan X, Zhang X, et al. 2021; Effectiveness of an anterior mini-screw in achieving incisor intrusion and palatal root torque for anterior retraction with clear aligners. Angle Orthod. 91:794–803. https://doi.org/10.2319/120420-982.1. DOI: 10.2319/120420-982.1. PMID: 34061964. PMCID: PMC8549549.
Article
17. Comba B, Parrini S, Rossini G, Castroflorio T, Deregibus A. 2017; A three-dimensional finite element analysis of upper-canine distalization with clear aligners, composite attachments, and Class II elastics. J Clin Orthod. 51:24–8. https://pubmed.ncbi.nlm.nih.gov/28253487/. PMID: 28253487.
18. Rossini G, Modica S, Parrini S, Deregibus A, Castroflorio T. 2021; Incisors extrusion with clear aligners technique: a finite element analysis study. Appl Sci. 11:1167. https://doi.org/10.3390/app11031167. DOI: 10.3390/app11031167. PMID: 51c1fcdd298d49b6bffe6415c4a5d7be.
Article
19. Cortona A, Rossini G, Parrini S, Deregibus A, Castroflorio T. 2020; Clear aligner orthodontic therapy of rotated mandibular round-shaped teeth: a finite element study. Angle Orthod. 90:247–54. https://doi.org/10.2319/020719-86.1. DOI: 10.2319/020719-86.1. PMID: 31469592. PMCID: PMC8051248.
Article
20. Kawamura J, Tamaya N. 2019; A finite element analysis of the effects of archwire size on orthodontic tooth movement in extraction space closure with miniscrew sliding mechanics. Prog Orthod. 20:3. https://doi.org/10.1186/s40510-018-0255-8. DOI: 10.1186/s40510-018-0255-8. PMID: 30663006. PMCID: PMC6339866. PMID: 00accc94414f46dba4471693b45f4ac0.
Article
21. Cattaneo PM, Dalstra M, Melsen B. 2005; The finite element method: a tool to study orthodontic tooth movement. J Dent Res. 84:428–33. https://doi.org/10.1177/154405910508400506. DOI: 10.1177/154405910508400506. PMID: 15840778.
Article
22. Tai S. 2018. Clear aligner technique. Quintessence;Batavia: https://www.amazon.com/Clear-Aligner-Technique-Sandra-Tai/dp/0867157771. DOI: 10.1016/j.ajodo.2018.09.002.
23. Eliades T, Athanasiou AE. 2021. Orthodontic aligner treatment. Thieme;New York: https://shop.thieme.com/Orthodontic-Aligner-Treatment/9783132411487. DOI: 10.1038/s41415-021-2706-8.
24. Chan E, Darendeliler MA. 2017; The Invisalign® appliance today: a thinking person's orthodontic appliance. Semin Orthod. 23:12–64. https://doi.org/10.1053/j.sodo.2016.10.003. DOI: 10.1053/j.sodo.2016.10.003.
Article
25. Kawamura J, Park JH, Kojima Y, Tamaya N, Kook YA, Kyung HM, et al. 2021; Biomechanical analysis for total mesialization of the maxillary dentition: a finite element study. Am J Orthod Dentofacial Orthop. 159:790–8. https://doi.org/10.1016/j.ajodo.2020.02.021. DOI: 10.1016/j.ajodo.2020.02.021. PMID: 33736907.
Article
26. Brezniak N. 2008; The clear plastic appliance: a biomechanical point of view. Angle Orthod. 78:381–2. https://pubmed.ncbi.nlm.nih.gov/18251593/. DOI: 10.2319/0003-3219(2008)078[0381:TCPA]2.0.CO;2. PMID: 18251593.
27. Upadhyay M, Shah R, Peterson D, Asaki T, Yadav S, Agarwal S. 2017; Force system generated by elastic archwires with vertical V bends: a three-dimensional analysis. Eur J Orthod. 39:202–8. https://doi.org/10.1093/ejo/cjw044. DOI: 10.1093/ejo/cjw044. PMID: 27287313. PMCID: PMC6279105.
Article
Full Text Links
  • KJOD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr