Korean J Orthod.  2025 Jan;55(1):69-81. 10.4041/kjod24.202.

Evaluation of the effects of the third molar on distalization and the effects of attachments on distalization and expansion with clear aligners: Three-dimensional finite element study

Affiliations
  • 1Department of Orthodontics, Hacettepe University, Ankara, Türkiye

Abstract


Objective
This study aimed to evaluate the effects of attachment design on maxillary molar distalization and simultaneous expansion during distalization, and the influence of third molars on distalization in the clear aligner technique using the finite element method.
Methods
Six models were created to evaluate three different attachment designs on the second molars. Model I: employed a vertical rectangular attachment; Model II: used a vertical rectangular attachment with the presence of the third molar; Model III: used a combined semi-elliptical attachment; and Model IV: featured an opposed semi-elliptical attachment with buccal and palatal components. Models I through IV focused on distalization. Models V and VI were created by adding expansions to Models III and IV. The displacement amounts, clear aligner deformations, and stress distributions were analyzed using Ansys 19.2.
Results
The presence of a third molar reduced maximum total displacement by 17%. Models I and III demonstrated similar distal displacement and tipping, both of which were more pronounced than in Model IV. Model IV achieved the most parallel tooth movement, with the least distal and buccal tipping and minimal distopalatal rotation. In the comparison of Models V and VI, Model VI exhibited greater distal and buccal displacements and more tipping than Model V.
Conclusions
The presence of a third molar reduced distalization efficiency and increased clear aligner deformation. For both movements, the attachment that provided the most parallel movement showed the least displacement. When selecting attachments, it is essential to consider factors such as tooth rotation, inclination, bone support, and root health.

Keyword

Attachment; Distalization; Expansion; Clear aligner

Figure

  • Figure 1 Patient records used in maxilla digital modeling; A, Maxillary arch intraoral scan image of the patient in standard tessellation language (STL) format. B, Cone-beam computed tomography image of the patient in digital imaging and communications in medicine (DICOM) format. C, D, Patient anatomical model. E, Mesh structure of the finite element model, front. F, Mesh structure of the finite element model, side.

  • Figure 2 A, Vertical rectangular attachment. B, Combined semi-elliptical attachment. C, Opposed semi-elliptical attachment.

  • Figure 3 Boundary condition applied to the finite element model; A, Yellow-colored arrow is the direction of the distalization force. B, Yellow-colored area is the clear aligner region where 0.25 mm distal displacement is applied. C, Yellow-colored arrow is the direction of the expansion force, yellow-colored areas are the clear aligner region where 0.50 mm buccal displacement is applied. D, Yellow-colored area where 0.25 mm distal and 0.50 mm buccal displacement is applied.

  • Figure 4 A, Measurement of XY-direction rotation. B, Measurement of X-direction displacement. C, Measurement of Y-direction displacement. D, Measurement of Z-direction displacement.

  • Figure 5 Total deformation and values of rotation of the second molar teeth for six models.

  • Figure 6 Displacement (deformation) observed in the clear aligners for six models.

  • Figure 7 Stress distribution on the teeth and attachments for six models.


Reference

References

1. Buschang PH, Shaw SG, Ross M, Crosby D, Campbell PM. 2014; Comparative time efficiency of aligner therapy and conventional edgewise braces. Angle Orthod. 84:391–6. https://doi.org/10.2319/062113-466. DOI: 10.2319/062113-466. PMID: 24749702. PMCID: PMC8667515.
Article
2. Fujiyama K, Honjo T, Suzuki M, Matsuoka S, Deguchi T. 2014; Analysis of pain level in cases treated with Invisalign aligner: comparison with fixed edgewise appliance therapy. Prog Orthod. 15:64. https://doi.org/10.1186/s40510-014-0064-7. DOI: 10.1186/s40510-014-0064-7. PMID: 25416143. PMCID: PMC4240829.
Article
3. Kravitz ND, Kusnoto B, BeGole E, Obrez A, Agran B. 2009; How well does Invisalign work? A prospective clinical study evaluating the efficacy of tooth movement with Invisalign. Am J Orthod Dentofacial Orthop. 135:27–35. https://doi.org/10.1016/j.ajodo.2007.05.018. DOI: 10.1016/j.ajodo.2007.05.018. PMID: 19121497.
Article
4. Rossini G, Parrini S, Castroflorio T, Deregibus A, Debernardi CL. 2015; Efficacy of clear aligners in controlling orthodontic tooth movement: a systematic review. Angle Orthod. 85:881–9. https://doi.org/10.2319/061614-436.1. DOI: 10.2319/061614-436.1. PMID: 25412265. PMCID: PMC8610387.
Article
5. Grünheid T, Loh C, Larson BE. 2017; How accurate is Invisalign in nonextraction cases? Are predicted tooth positions achieved? Angle Orthod. 87:809–15. https://doi.org/10.2319/022717-147.1. DOI: 10.2319/022717-147.1. PMID: 28686090. PMCID: PMC8317555.
Article
6. Simon M, Keilig L, Schwarze J, Jung BA, Bourauel C. 2014; Treatment outcome and efficacy of an aligner technique--regarding incisor torque, premolar derotation and molar distalization. BMC Oral Health. 14:68. https://doi.org/10.1186/1472-6831-14-68. DOI: 10.1186/1472-6831-14-68. PMID: 24923279. PMCID: PMC4068978.
Article
7. Ravera S, Castroflorio T, Garino F, Daher S, Cugliari G, Deregibus A. 2016; Maxillary molar distalization with aligners in adult patients: a multicenter retrospective study. Prog Orthod. 17:12. https://doi.org/10.1186/s40510-016-0126-0. DOI: 10.1186/s40510-016-0126-0. PMID: 27041551. PMCID: PMC4834290. PMID: 970deba192ee417f921a2b9ccfcdac13.
Article
8. Lione R, Balboni A, Di Fazio V, Pavoni C, Cozza P. 2022; Effects of pendulum appliance versus clear aligners in the vertical dimension during Class II malocclusion treatment: a randomized prospective clinical trial. BMC Oral Health. 22:441. https://doi.org/10.1186/s12903-022-02483-w. DOI: 10.1186/s12903-022-02483-w. PMID: 36217134. PMCID: PMC9552402. PMID: 5b6e393610a243f0ad82c79066a0e227.
Article
9. Rossini G, Schiaffino M, Parrini S, Sedran A, Deregibus A, Castroflorio T. 2020; Upper second molar distalization with clear aligners: a finite element study. Appl Sci. 10:7739. https://doi.org/10.3390/app10217739. DOI: 10.3390/app10217739. PMID: 1f5a0b08855247aca2e669c5f6660908.
Article
10. Tai S. 2018. Clear aligner technique. Quintessence Publishing;New Malden: https://www.quintessence-publishing.com/gbr/en/product/clear-aligner-technique. DOI: 10.1016/j.ajodo.2018.09.002.
11. Boyd RL. 2008; Esthetic orthodontic treatment using the invisalign appliance for moderate to complex malocclusions. J Dent Educ. 72:948–67. https://pubmed.ncbi.nlm.nih.gov/18676803/. DOI: 10.1002/j.0022-0337.2008.72.8.tb04570.x. PMID: 18676803.
Article
12. Konda P, Tarannum SA. 2012; Basic principles of finite element method and its applications in orthodontics. JPBMS. 16:1–8. https://www.dent.cmu.ac.th/cmdj/backend/web/uploads/files/6200d8f98f104.pdf. DOI: 10.1007/978-3-642-84676-2_1.
13. Gomez JP, Peña FM, Martínez V, Giraldo DC, Cardona CI. 2015; Initial force systems during bodily tooth movement with plastic aligners and composite attachments: a three-dimensional finite element analysis. Angle Orthod. 85:454–60. https://doi.org/10.2319/050714-330.1. DOI: 10.2319/050714-330.1. PMID: 25181252. PMCID: PMC8612436.
Article
14. Sari ÖF, Büyükçavuş MH. 2021; Finite element analysis applications in orthodontics. Aydın Dent J. 7:33–44. https://dergipark.org.tr/tr/pub/adj/issue/64464/806851. DOI: 10.17932/IAU.DENTAL.2015.009/dental_v07i1003.
15. Koç O, Pamukçu H, Kocabalkan AA. 2023; Comparison of 3 different bone-borne type expansion appliances used in surgically-assisted rapid palatal expansion: a finite element analysis. Am J Orthod Dentofacial Orthop. 163:e23–33. https://doi.org/10.1016/j.ajodo.2022.12.001. DOI: 10.1016/j.ajodo.2022.12.001. PMID: 36572581.
Article
16. Liu L, Song Q, Zhou J, Kuang Q, Yan X, Zhang X, et al. 2022; The effects of aligner overtreatment on torque control and intrusion of incisors for anterior retraction with clear aligners: a finite-element study. Am J Orthod Dentofacial Orthop. 162:33–41. https://doi.org/10.1016/j.ajodo.2021.02.020. DOI: 10.1016/j.ajodo.2021.02.020. PMID: 35219555.
Article
17. Livas C, Pazhman FS, Ilbeyli Z, Pandis N. 2023; Perceived esthetics and value of clear aligner therapy systems: a survey among dental school instructors and undergraduate students. Dental Press J Orthod. 28:e232225. https://doi.org/10.1590/2177-6709.28.3.e232225.oar. DOI: 10.1590/2177-6709.28.3.e232225.oar. PMID: 37493849. PMCID: PMC10365069. PMID: 41f36aa401c74feb8c47a372960f1935.
Article
18. Alansari RA. 2020; Youth perception of different orthodontic appliances. Patient Prefer Adherence. 14:1011–9. https://doi.org/10.2147/ppa.s257814. DOI: 10.2147/PPA.S257814. PMID: 32606617. PMCID: PMC7308181.
Article
19. Alansari RA, Faydhi DA, Ashour BS, Alsaggaf DH, Shuman MT, Ghoneim SH, et al. 2019; Adult perceptions of different orthodontic appliances. Patient Prefer Adherence. 13:2119–28. https://doi.org/10.2147/ppa.s234449. DOI: 10.2147/PPA.S234449. PMID: 31853175. PMCID: PMC6916694.
Article
20. Chi J, Liu Y, Yang L, Sun S, Liu W. 2021. Three-dimensional finite element analysis of maxillary molar distalization using different attachments with clear aligners. Paper presented at: 2021 third World Congress on Chemistry, Biotechnology and Medicine (WCCBM 2021). 2021 Jul 2-4; Zurich, Switzerland. Francis Academic Press;London: https://webofproceedings.org/proceedings_series/ALSMB/WCCBM%202021/DL2105052.pdf.
21. Comba B, Parrini S, Rossini G, Castroflorio T, Deregibus A. 2017; A three-dimensional finite element analysis of upper-canine distalization with clear aligners, composite attachments, and Class II elastics. J Clin Orthod. 51:24–8. https://pubmed.ncbi.nlm.nih.gov/28253487/.
22. Ayidağa C, Kamiloğlu B. 2021; Effects of variable composite attachment shapes in controlling upper molar distalization with aligners: a nonlinear finite element study. J Healthc Eng. 2021:5557483. https://doi.org/10.1155/2021/5557483. DOI: 10.1155/2021/5557483. PMID: 34457219. PMCID: PMC8397573.
Article
23. Houle JP, Piedade L, Todescan R Jr, Pinheiro FH. 2017; The predictability of transverse changes with Invisalign. Angle Orthod. 87:19–24. https://doi.org/10.2319/122115-875.1. DOI: 10.2319/122115-875.1. PMID: 27304231. PMCID: PMC8388591.
Article
24. Zhou N, Guo J. 2020; Efficiency of upper arch expansion with the Invisalign system. Angle Orthod. 90:23–30. https://doi.org/10.2319/022719-151.1. DOI: 10.2319/022719-151.1. PMID: 31368778. PMCID: PMC8087062.
Article
25. Karslı N, Ocak I, Akyıldız M, Gögen H, Dalci O. 2024; Evaluation of the effect of different attachment configurations on molar teeth in maxillary expansion with clear aligners - a finite element analysis. BMC Oral Health. 24:921. https://doi.org/10.1186/s12903-024-04544-8. DOI: 10.1186/s12903-024-04544-8. PMID: 39123145. PMCID: PMC11316360. PMID: 99f7a796e6ee4bc79ea2621a78cbf5ef.
Article
26. Kinzinger GS, Fritz UB, Sander FG, Diedrich PR. 2004; Efficiency of a pendulum appliance for molar distalization related to second and third molar eruption stage. Am J Orthod Dentofacial Orthop. 125:8–23. https://doi.org/10.1016/j.ajodo.2003.02.002. DOI: 10.1016/j.ajodo.2003.02.002. PMID: 14718874.
Article
Full Text Links
  • KJOD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr