Korean J Orthod.  2023 Sep;53(5):289-297. 10.4041/kjod23.056.

Pattern of microimplant displacement during maxillary skeletal expander treatment: A cone-beam computed tomography study

Affiliations
  • 1Private Practice, Houston, TX, USA
  • 2Center for Health Science, Section of Orthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
  • 3Department of Orthodontics, Rey Juan Carlos University, Madrid, Spain
  • 4Department of Orthodontics, State University of New York, Buffalo, NY, USA
  • 5Section of Orthodontics, UCSF School of Dentistry, San Francisco, CA, USA
  • 6Orthodontic and Craniofacial Development Research, Forsyth Institute, Cambridge, MA, USA
  • 7Department of Orthodontics, Ajou University, School of Medicine, Suwon, Korea

Abstract


Objective
To analyze the microimplant (MI) displacement pattern on treatment with a maxillary skeletal expander (MSE) using cone-beam computed tomography (CBCT).
Methods
Thirty-nine participants (12 males and 27 females; mean age, 18.2 ± 4.2 years) were treated successfully with the MSE II appliance. Their pre- and post-expansion CBCT data were superimposed. The pre- and post-expansion anterior and posterior inter-MI angles, neck and apical inter-MI distance, plate angle, palatal bone thickness at the MI positions, and suture opening at the MI positions were measured and compared.
Results
The jackscrew plate was slightly bent in both anterior and posterior areas. There was no significant difference in the extent of suture opening between the anterior and posterior MIs (P > 0.05). The posterior MI to hemiplate line was greater than that anteriorly (P < 0.05). The apical distance between the posterior MIs was greater than that anteriorly (P < 0.05). The palatal thickness at the anterior MIs was significantly greater than that posteriorly (P > 0.01).
Conclusions
In the coronal plane, the angulation between the anterior MIs in relation to the jackscrew plate was greater than that between the posterior MIs owing to the differential palatal bone thickness.

Keyword

Expansion; Microimplant-assisted rapid palatal expansion; Maxillary skeletal expander; Bone-anchored maxillary expander

Figure

  • Figure 1 Cone-beam computed tomography landmarks for MSE fabrication. A, The green line on the axial view is at the level of the greater extension of the zygomatic buttress (seen in the coronal view). B, The orange line on the axial view corresponds to the midpalatal suture. Planned MSE jackscrew position on the axial and sagittal views. C, Bone thickness measurements on the coronal and sagittal cuts at the level of insertion of the right anterior microimplant. MSE, maxillary skeletal expander.

  • Figure 2 MSE II device (Biomaterials Korea, Seoul, Korea). One MSE II expansion turn is equivalent to 0.133 mm of activation of the jackscrew. One revolution is equivalent to 6 turns or activation of the jackscrew by 0.8 mm. MSE II-12 indicates that the expansion size is 12 mm, which is equivalent to 90 turns. MSE, maxillary skeletal expander.

  • Figure 3 Anterior-coronal-microimplant section identified on the coronal view.

  • Figure 4 Parameters evaluated in the study. IMIA, inter-microimplant angle; IMIAD, inter-microimplant apical distance; SOMI, suture opening at microimplant level; PTMI, palatal thickness at microimplant level; PA, plate angle; MIPA, microimplant to plate angle; IMIND, inter-microimplant neck distance.

  • Figure 5 A, MSE expansion showing a more parallel displacement of the anterior and posterior microimplants. B, MSE expansion displaying a wider displacement pattern for the posterior microimplants. MSE, maxillary skeletal expander.


Reference

References

1. Baccetti T, Franchi L, Cameron CG, McNamara JA Jr. 2001; Treatment timing for rapid maxillary expansion. Angle Orthod. 71:343–50. https://pubmed.ncbi.nlm.nih.gov/11605867/.
2. Kiliç N, Kiki A, Oktay H. 2008; A comparison of dentoalveolar inclination treated by two palatal expanders. Eur J Orthod. 30:67–72. https://doi.org/10.1093/ejo/cjm099. DOI: 10.1093/ejo/cjm099. PMID: 18276928.
Article
3. Olmez H, Akin E, Karaçay S. 2007; Multitomographic evaluation of the dental effects of two different rapid palatal expansion appliances. Eur J Orthod. 29:379–85. https://doi.org/10.1093/ejo/cjm034. DOI: 10.1093/ejo/cjm034. PMID: 17702798.
Article
4. Kartalian A, Gohl E, Adamian M, Enciso R. 2010; Cone-beam computerized tomography evaluation of the maxillary dentoskeletal complex after rapid palatal expansion. Am J Orthod Dentofacial Orthop. 138:486–92. https://doi.org/10.1016/j.ajodo.2008.10.025. DOI: 10.1016/j.ajodo.2008.10.025. PMID: 20889055.
Article
5. Lagravère MO, Carey J, Heo G, Toogood RW, Major PW. 2010; Transverse, vertical, and anteroposterior changes from bone-anchored maxillary expansion vs traditional rapid maxillary expansion: a randomized clinical trial. Am J Orthod Dentofacial Orthop. 137:304.e1–12. discussion 304–5. https://doi.org/10.1016/j.ajodo.2009.09.016. DOI: 10.1016/j.ajodo.2009.09.016. PMID: 20197161.
Article
6. Carlson C, Sung J, McComb RW, Machado AW, Moon W. 2016; Microimplant-assisted rapid palatal expansion appliance to orthopedically correct transverse maxillary deficiency in an adult. Am J Orthod Dentofacial Orthop. 149:716–28. https://doi.org/10.1016/j.ajodo.2015.04.043. DOI: 10.1016/j.ajodo.2015.04.043. PMID: 27131254.
Article
7. Seo YJ, Chung KR, Kim SH, Nelson G. 2015; Camouflage treatment of skeletal class III malocclusion with asymmetry using a bone-borne rapid maxillary expander. Angle Orthod. 85:322–34. https://doi.org/10.2319/031314-189.1. DOI: 10.2319/031314-189.1. PMID: 25032737. PMCID: PMC8631886.
Article
8. Yılmaz A, Arman-Özçırpıcı A, Erken S, Polat-Özsoy Ö. 2015; Comparison of short-term effects of mini-implant-supported maxillary expansion appliance with two conventional expansion protocols. Eur J Orthod. 37:556–64. https://doi.org/10.1093/ejo/cju094. DOI: 10.1093/ejo/cju094. PMID: 25564504.
Article
9. Romano FL, Sverzut CE, Trivellato AE, Saraiva MCP, Nguyen TT. 2022; Alveolar defects before and after surgically assisted rapid palatal expansion (SARPE): a CBCT assessment. Dental Press J Orthod. 27:e2219299. https://doi.org/10.1590/2177-6709.27.2.e2219299.oar. DOI: 10.1590/2177-6709.27.2.e2219299.oar. PMID: 35703612. PMCID: PMC9191858. PMID: 43d872e35c154a9b979915107a8c770f.
Article
10. Holberg C, Winterhalder P, Rudzki-Janson I, Wichelhaus A. 2014; Finite element analysis of mono- and bicortical mini-implant stability. Eur J Orthod. 36:550–6. https://doi.org/10.1093/ejo/cjt023. DOI: 10.1093/ejo/cjt023. PMID: 23598610.
Article
11. Lee RJ, Moon W, Hong C. 2017; Effects of monocortical and bicortical mini-implant anchorage on bone-borne palatal expansion using finite element analysis. Am J Orthod Dentofacial Orthop. 151:887–97. https://doi.org/10.1016/j.ajodo.2016.10.025. DOI: 10.1016/j.ajodo.2016.10.025. PMID: 28457266. PMCID: PMC5472094.
Article
12. Paredes N, Colak O, Sfogliano L, Elkenawy I, Fijany L, Fraser A, et al. 2020; Differential assessment of skeletal, alveolar, and dental components induced by microimplant-supported midfacial skeletal expander (MSE), utilizing novel angular measurements from the fulcrum. Prog Orthod. 21:18. https://doi.org/10.1186/s40510-020-00320-w. DOI: 10.1186/s40510-020-00320-w. PMID: 32656601. PMCID: PMC7355053. PMID: 3f36d2bd852c4ec9aa3cacd7ca6825e4.
Article
13. Colak O, Paredes NA, Elkenawy I, Torres M, Bui J, Jahangiri S, et al. 2020; Tomographic assessment of palatal suture opening pattern and pterygopalatine suture disarticulation in the axial plane after midfacial skeletal expansion. Prog Orthod. 21:21. https://doi.org/10.1186/s40510-020-00321-9. DOI: 10.1186/s40510-020-00321-9. PMID: 32686018. PMCID: PMC7370251. PMID: d48b855ae99f48ea93dcefe40cb63710.
Article
14. Cantarella D, Dominguez-Mompell R, Moschik C, Mallya SM, Pan HC, Alkahtani MR, et al. 2018; Midfacial changes in the coronal plane induced by microimplant-supported skeletal expander, studied with cone-beam computed tomography images. Am J Orthod Dentofacial Orthop. 154:337–45. https://doi.org/10.1016/j.ajodo.2017.11.033. DOI: 10.1016/j.ajodo.2017.11.033. PMID: 30173836.
Article
15. Han S, Bayome M, Lee J, Lee YJ, Song HH, Kook YA. 2012; Evaluation of palatal bone density in adults and adolescents for application of skeletal anchorage devices. Angle Orthod. 82:625–31. https://doi.org/10.2319/071311-445.1. DOI: 10.2319/071311-445.1. PMID: 22077190. PMCID: PMC8845559.
Article
16. Wilmes B, Ludwig B, Vasudavan S, Nienkemper M, Drescher D. 2016; The T-Zone: median vs. paramedian insertion of palatal mini-implants. J Clin Orthod. 50:543–51. https://pubmed.ncbi.nlm.nih.gov/27809213/.
17. Wang M, Sun Y, Yu Y, Ding X. 2017; Evaluation of palatal bone thickness for insertion of orthodontic mini-implants in adults and adolescents. J Craniofac Surg. 28:1468–71. https://doi.org/10.1097/SCS.0000000000003906. DOI: 10.1097/SCS.0000000000003906. PMID: 28841595.
Article
18. Chatzigianni A, Keilig L, Reimann S, Eliades T, Bourauel C. 2011; Effect of mini-implant length and diameter on primary stability under loading with two force levels. Eur J Orthod. 33:381–7. https://doi.org/10.1093/ejo/cjq088. DOI: 10.1093/ejo/cjq088. PMID: 21062964.
Article
19. MacGinnis M, Chu H, Youssef G, Wu KW, Machado AW, Moon W. 2014; The effects of micro-implant assisted rapid palatal expansion (MARPE) on the nasomaxillary complex--a finite element method (FEM) analysis. Prog Orthod. 15:52. https://doi.org/10.1186/s40510-014-0052-y. DOI: 10.1186/s40510-014-0052-y. PMID: 25242527. PMCID: PMC4148550.
Article
20. Poorsattar-Bejeh Mir A. 2017; Monocortical versus bicortical hard palate anchorage with the same total available cortical thickness: a finite element study. J Investig Clin Dent. 8:e12218. https://doi.org/10.1111/jicd.12218. DOI: 10.1111/jicd.12218. PMID: 27157504.
Article
21. Lombardo L, Carlucci A, Maino BG, Colonna A, Paoletto E, Siciliani G. 2018; Class III malocclusion and bilateral cross-bite in an adult patient treated with miniscrew-assisted rapid palatal expander and aligners. Angle Orthod. 88:649–64. https://doi.org/10.2319/111617-790.1. DOI: 10.2319/111617-790.1. PMID: 29714067. PMCID: PMC8183134.
Article
22. Wilmes B, Nienkemper M, Drescher D. 2010; Application and effectiveness of a mini-implant- and tooth-borne rapid palatal expansion device: the hybrid hyrax. World J Orthod. 11:323–30. https://pubmed.ncbi.nlm.nih.gov/21490997/.
23. Pithon MM, Figueiredo DS, Oliveira DD. 2013; Mechanical evaluation of orthodontic mini-implants of different lengths. J Oral Maxillofac Surg. 71:479–86. https://doi.org/10.1016/j.joms.2012.10.002. DOI: 10.1016/j.joms.2012.10.002. PMID: 23273488.
Article
24. Brunetto DP, Sant'Anna EF, Machado AW, Moon W. 2017; Non-surgical treatment of transverse deficiency in adults using microimplant-assisted rapid palatal expansion (MARPE). Dental Press J Orthod. 22:110–25. https://doi.org/10.1590/2177-6709.22.1.110-125.sar. DOI: 10.1590/2177-6709.22.1.110-125.sar. PMID: 28444019. PMCID: PMC5398849.
Article
25. Cantarella D, Dominguez-Mompell R, Mallya SM, Moschik C, Pan HC, Miller J, et al. 2017; Changes in the midpalatal and pterygopalatine sutures induced by micro-implant-supported skeletal expander, analyzed with a novel 3D method based on CBCT imaging. Prog Orthod. 18:34. https://doi.org/10.1186/s40510-017-0188-7. DOI: 10.1186/s40510-017-0188-7. PMID: 29090368. PMCID: PMC5663987. PMID: c0a5028c7c5749d28981e5b6114032c6.
Article
26. Brettin BT, Grosland NM, Qian F, Southard KA, Stuntz TD, Morgan TA, et al. 2008; Bicortical vs monocortical orthodontic skeletal anchorage. Am J Orthod Dentofacial Orthop. 134:625–35. https://doi.org/10.1016/j.ajodo.2007.01.031. DOI: 10.1016/j.ajodo.2007.01.031. PMID: 18984394.
Article
Full Text Links
  • KJOD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr