Korean J Orthod.  2024 Nov;54(6):346-358. 10.4041/kjod24.180.

Effect of bone-borne maxillary skeletal expanders on cranial and circummaxillary sutures: A cone-beam computed tomography study

Affiliations
  • 1Department of Orthodontics, School of Dentistry, Kyung Hee University, Seoul, Korea

Abstract


Objective
Miniscrew-assisted maxillary expansion devices are frequently used for patients with calcified midpalatal sutures. This study aimed to evaluate the effects of two bone-borne maxillary expansion appliances on the cranial and circummaxillary sutures by comparing cone-beam computed tomography (CBCT) images before and after transverse maxillary expansion. Methods: A total of 81 patients (women = 58, men = 23) were treated with either a C-expander (n = 44) or an ATOZ expander (n = 37). CBCT images were obtained before (T0) and after (T1) maxillary expansion, and the widths of 10 circummaxillary sutures were measured in the sagittal, coronal, and axial planes. The Wilcoxon signed-rank test was used to compare the changes in suture width between the C-expander and ATOZ groups, and statistical significance was set at P < 0.05.
Results
The frontonasal, frontomaxillary, pterygomaxillary, nasomaxillary, internasal, intermaxillary, and midpalatal suture widths increased significantly after maxillary expansion in both the ATOZ and C-expander groups (both P < 0.05). The frontozygomatic, zygomaticomaxillary, and temporozygomatic suture widths decreased in the C-expander group (P < 0.05), whereas the frontozygomatic suture width increased significantly in the ATOZ group (P < 0.05). The width changes of the frontozygomatic, zygomaticomaxillary, temporozygomatic, pterygomaxillary, internasal, intermaxillary, and midpalatal sutures differed significantly between the two groups (P < 0.05).
Conclusions
Both the C- and ATOZ expanders affected the suture width in the naso-maxillozygomatic region. The C-expander decreased the circum-zygomatic suture widths, whereas the ATOZ expander widened the frontozygomatic suture with no effect on other circummaxillary sutures.

Keyword

Computed tomography; Expansion; C-expander; ATOZ expander

Figure

  • Figure 1 Representative pre- and post-treatment occlusal images of a 16 year-old girl treated with a tissue bone-borne type C-expander showing the treatment stages of C-expander: A, After placement of six 1.6-mm diameter, 8-mm length miniscrews, B, device placement, C, post-expansion, D, occlusal radiograph after expansion.

  • Figure 2 Schematic illustration of the ATOZ expander. A, The ATOZ expander is composed of the base, a hexagonal nut, screw holes formed in the base, and a screw hole for the wire arm. B, Comparison of the sizes of the tooth-bone hybrid MARPE (MSE2, Biomaterials Korea Inc., Seoul, Korea) and ATOZ (MK Meditech Inc., Seongnam, Korea). C, MSE2 applied to a model with a narrow palate. D, ATOZ applied to the same model as in (C). Both devices facilitate expansion up to 8 mm.

  • Figure 3 Graph showing the amount of expansion achieved with the ATOZ. Initially, the expansion occurs rapidly owing to the effective expansion force; however, expansion gradually decreases over time. At this stage, treatment can be completed quickly with rapid expansion, or the expansion can be slowed to keep the circum-maxillary sutures continuously activated, depending on the treatment goals. *The ATOZ can withstand up to 50 kgf of compression force without permanent deformation and can easily revert to its original shape. This unique capability is due to its distinctive 4-link structure, similar to that of a beam spring, allows for the continuous dissipation of heavy orthopedic forces (ranging from 7–12 kgf) for > 4 weeks or until the next appointment.

  • Figure 4 A, B, ATOZ placement using a thermoplastic installation guide. After administering lidocaine local anesthesia, the installation guide is placed on the palate and a motor-driven screwdriver is used to insert the anchoring miniscrews. After inserting the four anchoring miniscrews, the ATOZ achieves initial stability. The installation guide is removed, and the remaining miniscrews are inserted. C, D, Intraoral photographs taken before and after key activation, respectively.

  • Figure 5 Representative pre- and post-treatment images of a 15-year-old girl treated with pure bone-borne type ATOZ expander. Intraoral photographs and cone-beam computed tomography images showing the treatment stages of the pure bone-borne ATOZ expander: A–C, Expansion started; D–F, After 8 mm expansion.

  • Figure 6 Schematic diagram showing the 10 circummaxillary sutures measured in this study: A, Coronal plane; B, Sagittal plane; C, Axial plane.

  • Figure 7 Orientation of the radiographs in the coronal, sagittal, and axial planes.

  • Figure 8 Sutures measured in the sagittal plane. A, B, Frontonasal suture; C, D, Frontomaxillary suture; E, F, Pterygomaxillary suture. Red arrow, actual suture measured.

  • Figure 9 Sutures measured in the coronal plane. A, B, Frontozygomatic suture; C, D, Zygomaticomaxillary suture; E, F, Temporozygomatic suture.

  • Figure 10 Sutures measured in the axial plane. A, B, Internasal suture; C, D, Nasomaxillary suture; E, F, Intermaxillary (IM), midpalatal canine (MPC), midpalatal premolar (MPP), midpalatal molar (MPM) and midpalatal posterior nasal spine (MPPNS) sutures.

  • Figure 11 Schematic illustrations of tooth displacement following moderate orthodontic force application (A) and midpalatal suture (MPS) and circummaxillary suture (CMS) separation after ATOZ expander activation (B). Adapted from the book of Graber et al. (Orthodontics: current principles and techniques. 6th ed. St. Louis: Elsevier; 2017. Chapter 4, Figure 4-49 with original copyright holder’s permission.32


Cited by  1 articles

READER’S FORUM
Soo Hyun Nam
Korean J Orthod. 2025;55(1):1-2.    doi: 10.4041/kjod55.0001RF.


Reference

1. Lagravère MO, Carey J, Heo G, Toogood RW, Major PW. 2010; Transverse, vertical, and anteroposterior changes from bone-anchored maxillary expansion vs traditional rapid maxillary expansion: a randomized clinical trial. Am J Orthod Dentofacial Orthop. 137:304.e1–12. discussion 304–5. https://doi.org/10.1016/j.ajodo.2009.09.016. DOI: 10.1016/j.ajodo.2009.09.016. PMID: 20197161.
2. Gautam P, Valiathan A, Adhikari R. 2007; Stress and displacement patterns in the craniofacial skeleton with rapid maxillary expansion: a finite element method study. Am J Orthod Dentofacial Orthop. 132:5.e1–11. https://doi.org/10.1016/j.ajodo.2006.09.044. DOI: 10.1016/j.ajodo.2006.09.044. PMID: 17628242.
3. Gardner GE, Kronman JH. 1971; Cranioskeletal displacements caused by rapid palatal expansion in the rhesus monkey. Am J Orthod. 59:146–55. https://doi.org/10.1016/0002-9416(71)90046-7. DOI: 10.1016/0002-9416(71)90046-7. PMID: 4993115.
4. Garrett BJ, Caruso JM, Rungcharassaeng K, Farrage JR, Kim JS, Taylor GD. 2008; Skeletal effects to the maxilla after rapid maxillary expansion assessed with cone-beam computed tomography. Am J Orthod Dentofacial Orthop. 134:8–9. https://doi.org/10.1016/j.ajodo.2008.06.004. DOI: 10.1016/j.ajodo.2008.06.004. PMID: 18617096.
5. Baer MJ. 1954; Patterns of growth of the skull as revealed by vital staining. Hum Biol. 26:80–126. https://pubmed.ncbi.nlm.nih.gov/13191803/.
6. Starnbach H, Bayne D, Cleall J, Subtelny JD. 1966; Facioskeletal and dental changes resulting from rapid maxillary expansion. Angle Orthod. 36:152–64. https://pubmed.ncbi.nlm.nih.gov/4956318/.
7. Ghoneima A, Abdel-Fattah E, Hartsfield J, El-Bedwehi A, Kamel A, Kula K. 2011; Effects of rapid maxillary expansion on the cranial and circummaxillary sutures. Am J Orthod Dentofacial Orthop. 140:510–9. https://doi.org/10.1016/j.ajodo.2010.10.024. DOI: 10.1016/j.ajodo.2010.10.024. PMID: 21967938. PMCID: PMC5161454.
8. Baydas B, Yavuz I, Uslu H, Dagsuyu IM, Ceylan I. 2006; Nonsurgical rapid maxillary expansion effects on craniofacial structures in young adult females. A bone scintigraphy study. Angle Orthod. 76:759–67. https://doi.org/10.1043/0003-3219(2006)076[0759:Nrmeeo]2.0.Co;2.
9. Leonardi R, Sicurezza E, Cutrera A, Barbato E. 2011; Early post-treatment changes of circumaxillary sutures in young patients treated with rapid maxillary expansion. Angle Orthod. 81:36–41. https://doi.org/10.2319/050910-250.1. DOI: 10.2319/050910-250.1. PMID: 20936952. PMCID: PMC8926357.
10. Leonardi R, Cutrera A, Barbato E. 2010; Rapid maxillary expansion affects the spheno-occipital synchondrosis in youngsters. A study with low-dose computed tomography. Angle Orthod. 80:106–10. https://doi.org/10.2319/012709-56.1. DOI: 10.2319/012709-56.1. PMID: 19852648. PMCID: PMC8978747.
11. Jin B, Choi JY, Kim SH. 2024; The design of bone-borne maxillary expander affects the different dentoalveolar inclination and expansion pattern: a CBCT study. Semin Orthod. [Epub ahead of print] https://doi.org/10.1053/j.sodo.2024.05.002. DOI: 10.1053/j.sodo.2024.05.002.
12. Braun S, Bottrel JA, Lee KG, Lunazzi JJ, Legan HL. 2000; The biomechanics of rapid maxillary sutural expansion. Am J Orthod Dentofacial Orthop. 118:257–61. https://doi.org/10.1067/mod.2000.108254. DOI: 10.1067/mod.2000.108254. PMID: 10982925.
13. Park JJ, Park YC, Lee KJ, Cha JY, Tahk JH, Choi YJ. 2017; Skeletal and dentoalveolar changes after miniscrew-assisted rapid palatal expansion in young adults: a cone-beam computed tomography study. Korean J Orthod. 47:77–86. https://doi.org/10.4041/kjod.2017.47.2.77. DOI: 10.4041/kjod.2017.47.2.77. PMID: 28337417. PMCID: PMC5359634.
14. Jafari A, Shetty KS, Kumar M. 2003; Study of stress distribution and displacement of various craniofacial structures following application of transverse orthopedic forces-a three-dimensional FEM study. Angle Orthod. 73:12–20. https://pubmed.ncbi.nlm.nih.gov/12607850/.
15. Sun Z, Hueni S, Tee BC, Kim H. 2011; Mechanical strain at alveolar bone and circummaxillary sutures during acute rapid palatal expansion. Am J Orthod Dentofacial Orthop. 139:e219–28. https://doi.org/10.1016/j.ajodo.2009.12.029. DOI: 10.1016/j.ajodo.2009.12.029. PMID: 21392665.
16. Hartono N, Soegiharto BM, Widayati R. 2018; The difference of stress distribution of maxillary expansion using rapid maxillary expander (RME) and maxillary skeletal expander (MSE)-a finite element analysis. Prog Orthod. 19:33. https://doi.org/10.1186/s40510-018-0229-x. DOI: 10.1186/s40510-018-0229-x. PMID: 30280257. PMCID: PMC6168444. PMID: 33deaef3ea1c4aa0b07d6fd59f228e2e.
17. Mao JJ. 2002; Mechanobiology of craniofacial sutures. J Dent Res. 81:810–6. https://doi.org/10.1177/154405910208101203. DOI: 10.1177/154405910208101203. PMID: 12454093.
18. Isaacson RJ, Ingram AH. 1964; Forces produced by rapid maxillary expansion: II. forces present during treatment. Angle Orthod. 34:261–70. https://pubmed.ncbi.nlm.nih.gov/14331018/.
19. Prado GP, Furtado F, Aloise AC, Biló JP, Masako Ferreira L, Pereira MD. 2014; Stability of surgically assisted rapid palatal expansion with and without retention analyzed by 3-dimensional imaging. Am J Orthod Dentofacial Orthop. 145:610–6. https://doi.org/10.1016/j.ajodo.2013.12.026. DOI: 10.1016/j.ajodo.2013.12.026. PMID: 24785925.
20. de Oliveira CB, Ayub P, Ledra IM, Murata WH, Suzuki SS, Ravelli DB, et al. 2021; Microimplant assisted rapid palatal expansion vs surgically assisted rapid palatal expansion for maxillary transverse discrepancy treatment. Am J Orthod Dentofacial Orthop. 159:733–42. https://doi.org/10.1016/j.ajodo.2020.03.024. DOI: 10.1016/j.ajodo.2020.03.024. PMID: 33931257.
21. Ahmida A, Mehta S, Amelemah E, Bashir R, Vich ML, Tadinada A, et al. 2023; Short-term and long-term effects of miniscrew-assisted and conventional rapid palatal expansion on the cranial and circummaxillary sutures. Am J Orthod Dentofacial Orthop. 163:e115–26. https://doi.org/10.1016/j.ajodo.2023.01.007. DOI: 10.1016/j.ajodo.2023.01.007. PMID: 36754700.
22. Kim JW, Park JJ, Kim SH. 2024; Comparison of geometric changes in basal arch form after maxillary expansion between pure bone-borne and tissue-bone-borne appliance. Semin Orthod. [Epub ahead of print] https://doi.org/10.1053/j.sodo.2024.08.004. DOI: 10.1053/j.sodo.2024.08.004.
23. Choi JY, Choo H, Oh SH, Park JH, Chung KR, Kim SH. 2021; Finite element analysis of C-expanders with different vertical vectors of anchor screws. Am J Orthod Dentofacial Orthop. 159:799–807. https://doi.org/10.1016/j.ajodo.2020.02.024. DOI: 10.1016/j.ajodo.2020.02.024. PMID: 33762139.
24. Cho AR, Park JH, Moon W, Chae JM, Kang KH. 2022; Short-term effects of microimplant-assisted rapid palatal expansion on the circummaxillary sutures in skeletally mature patients: a cone-beam computed tomography study. Am J Orthod Dentofacial Orthop. 161:e187–97. https://doi.org/10.1016/j.ajodo.2021.01.023. DOI: 10.1016/j.ajodo.2021.01.023. PMID: 34872829.
25. Isaacson RJ, Wood JL, Ingram AH. 1964; Forces produced by rapid maxillary expansion: I. design of the force measuring system. Angle Orthod. 34:256–60. https://meridian.allenpress.com/angle-orthodontist/article/34/4/256/55749/Forces-Produced-By-Rapid-Maxillary-ExpansionI.
26. Kopher RA, Mao JJ. 2003; Suture growth modulated by the oscillatory component of micromechanical strain. J Bone Miner Res. 18:521–8. https://doi.org/10.1359/jbmr.2003.18.3.521. DOI: 10.1359/jbmr.2003.18.3.521. PMID: 12619937.
27. Storey E. 1973; Tissue response to the movement of bones. Am J Orthod. 64:229–47. https://doi.org/10.1016/0002-9416(73)90017-1. DOI: 10.1016/0002-9416(73)90017-1. PMID: 4199007.
28. Dibbs RP, Ferry AM, Sarrami SM, Abu-Ghname A, Dempsey RF, Buchanan EP. 2021; Distraction osteogenesis: mandible and maxilla. Facial Plast Surg. 37:751–8. https://doi.org/10.1055/s-0041-1727248. DOI: 10.1055/s-0041-1727248. PMID: 33940653.
29. Park JJ, Park KH, Kim SH, Ahn HW. 2024; Critical issues concerning miniscrew-assisted rapid palatal expanders: a narrative review. Semin Orthod. [Epub ahead of print] https://doi.org/10.1053/j.sodo.2024.04.003. DOI: 10.1053/j.sodo.2024.04.003.
30. Choo H, Moon SC. 2024; Growth of the maxillary apical base in post-adolescents with craniofacial dysmorphism using ATOZTM orthodontic distraction osteogenesis. Semin Orthod. [Epub ahead of print] https://doi.org/10.1053/j.sodo.2024.06.005. DOI: 10.1053/j.sodo.2024.06.005.
31. Castello JR, Olaso AS, Chao JJ, McCarthy JG, Molina F. 2000; Craniofacial shortening by contraction osteogenesis: an experimental model. Plast Reconstr Surg. 105:617–25. discussion 626–7. https://doi.org/10.1097/00006534-200002000-00021. DOI: 10.1097/00006534-200002000-00021. PMID: 10697169.
32. Roberts WE, Huja SS. Graber LW, Vanarsdall RL, Vig KWL, Huang GJ, editors. 2017. Bone physiology, metabolism, and biomechanics in orthodontic practice. Orthodontics: current principles and techniques. 6th ed. Elsevier;St. Louis: p. 100–49. https://search.worldcat.org/ko/title/951917299. DOI: 10.5772/intechopen.107741.
Full Text Links
  • KJOD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr