1. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan SS, Kissela BM, Knutson KL, Levine DA, Lewis TT, Liu J, Loop MS, Ma J, Mussolino ME, Navaneethan SD, Perak AM, Poudel R, Rezk-Hanna M, Roth GA, Schroeder EB, Shah SH, Thacker EL, VanWagner LB, Virani SS, Voecks JH, Wang NY, Yaffe K, Martin SS. 2022; Heart Disease and Stroke Statistics-2022 update: a report from the American Heart Association. Circulation. 145:e153–e639. DOI:
10.1161/CIR.0000000000001052. PMID:
35078371.
Article
2. Liu YW, Chen B, Yang X, Fugate JA, Kalucki FA, Futaku-chi-Tsuchida A, Couture L, Vogel KW, Astley CA, Balde-ssari A, Ogle J, Don CW, Steinberg ZL, Seslar SP, Tuck SA, Tsuchida H, Naumova AV, Dupras SK, Lyu MS, Lee J, Hailey DW, Reinecke H, Pabon L, Fryer BH, MacLellan WR, Thies RS, Murry CE. 2018; Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat Biotechnol. 36:597–605. DOI:
10.1038/nbt.4162. PMID:
29969440. PMCID:
PMC6329375.
Article
3. Karbassi E, Fenix A, Marchiano S, Muraoka N, Nakamura K, Yang X, Murry CE. 2020; Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol. 17:341–359. DOI:
10.1038/s41569-019-0331-x. PMID:
32015528. PMCID:
PMC7239749.
Article
4. Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, Mahoney WM, Van Biber B, Cook SM, Palpant NJ, Gantz JA, Fugate JA, Muskheli V, Gough GM, Vogel KW, Astley CA, Hotchkiss CE, Baldessari A, Pabon L, Reinecke H, Gill EA, Nelson V, Kiem HP, Laflamme MA, Murry CE. 2014; Human embryonic-stem-cell-derived cardiomyocytes rege-nerate non-human primate hearts. Nature. 510:273–277. DOI:
10.1038/nature13233. PMID:
24776797. PMCID:
PMC4154594.
Article
5. Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, Raval KK, Zhang J, Kamp TJ, Palecek SP. 2012; Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A. 109:E1848–E1857. DOI:
10.1073/pnas.1200250109. PMID:
22645348. PMCID:
PMC3390875.
Article
6. Martin MJ, Muotri A, Gage F, Varki A. 2005; Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med. 11:228–232. DOI:
10.1038/nm1181. PMID:
15685172.
Article
9. Ashok P, Parikh A, Du C, Tzanakakis ES. 2020; Xenogeneic-free system for biomanufacturing of cardiomyocyte progeny from human pluripotent stem cells. Front Bioeng Biotech-nol. 8:571425. DOI:
10.3389/fbioe.2020.571425. PMID:
33195131. PMCID:
PMC7644809.
Article
10. Chou HH, Takematsu H, Diaz S, Iber J, Nickerson E, Wright KL, Muchmore EA, Nelson DL, Warren ST, Varki A. 1998; A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc Natl Acad Sci U S A. 95:11751–11756. DOI:
10.1073/pnas.95.20.11751. PMID:
9751737. PMCID:
PMC21712.
Article
11. Irie A, Koyama S, Kozutsumi Y, Kawasaki T, Suzuki A. 1998; The molecular basis for the absence of N-glycolylneuraminic acid in humans. J Biol Chem. 273:15866–15871. DOI:
10.1074/jbc.273.25.15866. PMID:
9624188.
Article
12. Varki A, Schnaar RL, Schauer R. Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Darvill AG, Kinoshita T, Packer NH, Prestegard JH, Schnaar RL, Seeberger PH, editors. 2015. Sialic acids and other nonulosonic acids. Essentials of Glycobiology. 3rd ed. Cold Spring Harbor Laboratory Press;Cold Spring Harbor: p. 179–195.
13. Tangvoranuntakul P, Gagneux P, Diaz S, Bardor M, Varki N, Varki A, Muchmore E. 2003; Human uptake and incorpo-ration of an immunogenic nonhuman dietary sialic acid. Proc Natl Acad Sci U S A. 100:12045–12050. DOI:
10.1073/pnas.2131556100. PMID:
14523234. PMCID:
PMC218710.
Article
14. Hedlund M, Padler-Karavani V, Varki NM, Varki A. 2008; Evidence for a human-specific mechanism for diet and antibody-mediated inflammation in carcinoma progression. Proc Natl Acad Sci U S A. 105:18936–18941. DOI:
10.1073/pnas.0803943105. PMID:
19017806. PMCID:
PMC2596253.
Article
15. Bardor M, Nguyen DH, Diaz S, Varki A. 2005; Mechanism of uptake and incorporation of the non-human sialic acid N-glycolylneuraminic acid into human cells. J Biol Chem. 280:4228–4237. DOI:
10.1074/jbc.M412040200. PMID:
15557321.
Article
16. Padler-Karavani V, Hurtado-Ziola N, Pu M, Yu H, Huang S, Muthana S, Chokhawala HA, Cao H, Secrest P, Friedmann-Morvinski D, Singer O, Ghaderi D, Verma IM, Liu YT, Messer K, Chen X, Varki A, Schwab R. 2011; Human xeno-autoantibodies against a non-human sialic acid serve as novel serum biomarkers and immunotherapeutics in cancer. Cancer Res. 71:3352–3363. DOI:
10.1158/0008-5472.CAN-10-4102. PMID:
21505105. PMCID:
PMC3085609.
Article
17. Samraj AN, Pearce OM, Läubli H, Crittenden AN, Bergfeld AK, Banda K, Gregg CJ, Bingman AE, Secrest P, Diaz SL, Varki NM, Varki A. 2015; A red meat-derived glycan promotes inflammation and cancer progression. Proc Natl Acad Sci U S A. 112:542–547. DOI:
10.1073/pnas.1417508112. PMID:
25548184. PMCID:
PMC4299224.
Article
18. Bashir S, Fezeu LK, Leviatan Ben-Arye S, Yehuda S, Reuven EM, Szabo de Edelenyi F, Fellah-Hebia I, Le Tourneau T, Imbert-Marcille BM, Drouet EB, Touvier M, Roussel JC, Yu H, Chen X, Hercberg S, Cozzi E, Soulillou JP, Galan P, Padler-Karavani V. 2020; Association between Neu5Gc carbohydrate and serum antibodies against it provides the molecular link to cancer: French NutriNet-Santé study. BMC Med. 18:262. DOI:
10.1186/s12916-020-01721-8. PMID:
32962714. PMCID:
PMC7510162.
Article
19. Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, Hsiao C, Kamp TJ, Palecek SP. 2013; Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc. 8:162–175. DOI:
10.1038/nprot.2012.150. PMID:
23257984. PMCID:
PMC3612968.
Article
20. Lee SJ, Kim HA, Kim SJ, Lee HA. 2021; Improving generation of cardiac organoids from human pluripotent stem cells using the aurora kinase inhibitor ZM447439. Biomedicines. 9:1952. DOI:
10.3390/biomedicines9121952. PMID:
34944767. PMCID:
PMC8698385.
21. Seo N, Ko J, Lee D, Jeong H, Oh MJ, Kim U, Lee DH, Kim J, Choi YJ, An HJ. 2021; In-depth characterization of non-human sialic acid (Neu5Gc) in human serum using label-free ZIC-HILIC/MRM-MS. Anal Bioanal Chem. 413:5227–5237. DOI:
10.1007/s00216-021-03495-1. PMID:
34235565.
Article
22. Hua S, Saunders M, Dimapasoc LM, Jeong SH, Kim BJ, Kim S, So M, Lee KS, Kim JH, Lam KS, Lebrilla CB, An HJ. 2014; Differentiation of cancer cell origin and molecular subtype by plasma membrane N-glycan profiling. J Proteome Res. 13:961–968. DOI:
10.1021/pr400987f. PMID:
24303873. PMCID:
PMC3946297.
Article
23. Oh MJ, Hua S, Kim BJ, Jeong HN, Jeong SH, Grimm R, Yoo JS, An HJ. 2013; Analytical platform for glycomic characterization of recombinant erythropoietin biotherapeutics and biosimilars by MS. Bioanalysis. 5:545–559. DOI:
10.4155/bio.12.327. PMID:
23425271.
Article
24. Mummery CL, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ. 2012; Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res. 111:344–358. DOI:
10.1161/CIRCRESAHA.110.227512. PMID:
22821908. PMCID:
PMC3578601.
Article
26. Jung G, Fajardo G, Ribeiro AJ, Kooiker KB, Coronado M, Zhao M, Hu DQ, Reddy S, Kodo K, Sriram K, Insel PA, Wu JC, Pruitt BL, Bernstein D. 2016; Time-dependent evolution of functional vs. remodeling signaling in induced pluripotent stem cell-derived cardiomyocytes and induced maturation with biomechanical stimulation. FASEB J. 30:1464–1479. DOI:
10.1096/fj.15-280982. PMID:
26675706. PMCID:
PMC4799510.
Article
27. Ojala M, Rajala K, Pekkanen-Mattila M, Miettinen M, Huhtala H, Aalto-Setälä K. 2012; Culture conditions affect cardiac differentiation potential of human pluripotent stem cells. PLoS One. 7:e48659. DOI:
10.1371/journal.pone.0048659. PMID:
23119085. PMCID:
PMC3485380.
Article
28. Feaster TK, Cadar AG, Wang L, Williams CH, Chun YW, Hempel JE, Bloodworth N, Merryman WD, Lim CC, Wu JC, Knollmann BC, Hong CC. 2015; Matrigel mattress: a method for the generation of single contracting human-induced pluripotent stem cell-derived cardiomyocytes. Circ Res. 117:995–1000. DOI:
10.1161/CIRCRESAHA.115.307580. PMID:
26429802. PMCID:
PMC4670592.
29. Lim JJ, Kim HJ, Rhie BH, Lee MR, Choi MJ, Hong SH, Kim KS. 2019; Maintenance of hPSCs under Xeno-free and che-mically defined culture conditions. Int J Stem Cells. 12:484–496. DOI:
10.15283/ijsc19090. PMID:
31658510. PMCID:
PMC6881038.
30. Hua Y, Yoshimochi K, Li J, Takekita K, Shimotsuma M, Li L, Qu X, Zhang J, Sawa Y, Liu L, Miyagawa S. 2022; Development and evaluation of a novel xeno-free culture medium for human-induced pluripotent stem cells. Stem Cell Res Ther. 13:223. DOI:
10.1186/s13287-022-02879-z. PMID:
35658933. PMCID:
PMC9166585.
Article
31. Tateishi K, Ando W, Higuchi C, Hart DA, Hashimoto J, Nakata K, Yoshikawa H, Nakamura N. 2008; Comparison of human serum with fetal bovine serum for expansion and differentiation of human synovial MSC: potential feasibility for clinical applications. Cell Transplant. 17:549–557. DOI:
10.3727/096368908785096024. PMID:
18714674.
32. Sung TC, Liu CH, Huang WL, Lee YC, Kumar SS, Chang Y, Ling QD, Hsu ST, Higuchi A. 2019; Efficient differentiation of human ES and iPS cells into cardiomyocytes on biomaterials under xeno-free conditions. Biomater Sci. 7:5467–5481. DOI:
10.1039/C9BM00817A. PMID:
31656967.
33. Villa-Diaz LG, Ross AM, Lahann J, Krebsbach PH. 2013; Concise review: the evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells. 31:1–7. DOI:
10.1002/stem.1260. PMID:
23081828. PMCID:
PMC3537180.
Article
35. Bosman A, Sartiani L, Spinelli V, Del Lungo M, Stillitano F, Nosi D, Mugelli A, Cerbai E, Jaconi M. 2013; Molecular and functional evidence of HCN4 and caveolin-3 interaction during cardiomyocyte differentiation from human embryonic stem cells. Stem Cells Dev. 22:1717–1727. DOI:
10.1089/scd.2012.0247. PMID:
23311301. PMCID:
PMC3657289.
Article
36. Medeiros-Domingo A, Bhuiyan ZA, Tester DJ, Hofman N, Bikker H, van Tintelen JP, Mannens MM, Wilde AA, Ackerman MJ. 2009; The RYR2-encoded ryanodine receptor/calcium release channel in patients diagnosed previously with either catecholaminergic polymorphic ventricular tachycardia or genotype negative, exercise-induced long QT syndrome: a comprehensive open reading frame mutational analysis. J Am Coll Cardiol. 54:2065–2074. DOI:
10.1016/j.jacc.2009.08.022. PMID:
19926015. PMCID:
PMC2880864.
Article
37. Yang HT, Tweedie D, Wang S, Guia A, Vinogradova T, Bogdanov K, Allen PD, Stern MD, Lakatta EG, Boheler KR. 2002; The ryanodine receptor modulates the spontaneous beating rate of cardiomyocytes during development. Proc Natl Acad Sci U S A. 99:9225–9230. DOI:
10.1073/pnas.142651999. PMID:
12089338. PMCID:
PMC123122.
Article
39. Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M, Murphy BA, Satinover SM, Hosen J, Mauro D, Slebos RJ, Zhou Q, Gold D, Hatley T, Hicklin DJ, Platts-Mills TA. 2008; Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med. 358:1109–1117. DOI:
10.1056/NEJMoa074943. PMID:
18337601. PMCID:
PMC2361129.
Article
40. Swiontek K, Morisset M, Codreanu-Morel F, Fischer J, Mehlich J, Darsow U, Petitpain N, Biedermann T, Ollert M, Eberlein B, Hilger C. 2019; Drugs of porcine origin- a risk for patients with α-gal syndrome? J Allergy Clin Immunol Pract. 7:1687–1690.e3. DOI:
10.1016/j.jaip.2018.12.005. PMID:
30557715.