Int J Stem Cells.  2021 Nov;14(4):366-385. 10.15283/ijsc21077.

Maturation of Stem Cell-Derived Cardiomyocytes: Foe in Translation Medicine

Affiliations
  • 1Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China

Abstract

With the in-depth study of heart development, many human cardiomyocytes (CMs) have been generated in a laboratory environment. CMs derived from pluripotent stem cells (PSCs) have been widely used for a series of applications such as laboratory studies, drug toxicology screening, cardiac disease models, and as an unlimited resource for cell-based cardiac regeneration therapy. However, the low maturity of the induced CMs significantly impedes their applicability. Scientists have been committed to improving the maturation of CMs to achieve the purpose of heart regeneration in the past decades. In this review, we take CMs maturation as the main object of discussion, describe the characteristics of CMs maturation, summarize the key regulatory mechanism of regulating maturation and address the approaches to promote CMs maturation. The maturation of CM is gradually improving due to the incorporation of advanced technologies and is expected to continue.

Keyword

Cardiac maturation; Pluripotent stem cell; Regenerative medicine; Maturation regulation

Figure

  • Fig. 1 Major challenges and applications of pluripotent stem cell-derived cardiomyocytes (hPSC-CMs).

  • Fig. 2 Major characteristics of cardiomyocyte maturation. Dynamic chan-ges of structure and function of cardiomyocytes occur during maturation. Major characteristics of human pluripotent stem cell-derived cardiomyo-cytes (representing immature cardio-myocyte) and adult-like cardiomyo-cytes (representing mature cardio-myocyte) as discussed in the text.

  • Fig. 3 The complicated regulatory layers of cardiomyocyte maturation. As illustrated, the complex regulatory events of cardiomyocyte maturation include transcriptional, posttranscriptional and epigentic regula-tion.

  • Fig. 4 Approaches to acquire CM maturation. Representative strategies that promote hPSC-CMs maturation.


Reference

References

1. Zhou M, Wang H, Zeng X, Yin P, Zhu J, Chen W, Li X, Wang L, Wang L, Liu Y, Liu J, Zhang M, Qi J, Yu S, Afshin A, Gakidou E, Glenn S, Krish VS, Miller-Petrie MK, Mountjoy-Venning WC, Mullany EC, Redford SB, Liu H, Naghavi M, Hay SI, Wang L, Murray CJL, Liang X. 2019; Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 394:1145–1158. DOI: 10.1016/S0140-6736(19)30427-1. PMID: 31248666. PMCID: PMC6891889.
Article
2. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. 1998; Embryonic stem cell lines derived from human blastocysts. Science. 282:1145–1147. DOI: 10.1126/science.282.5391.1145. PMID: 9804556.
Article
3. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. 2007; Induced pluripotent stem cell lines derived from human somatic cells. Science. 318:1917–1920. DOI: 10.1126/science.1151526. PMID: 18029452.
Article
4. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. 2007; Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131:861–872. DOI: 10.1016/j.cell.2007.11.019. PMID: 18035408.
Article
5. Zwi L, Caspi O, Arbel G, Huber I, Gepstein A, Park IH, Gepstein L. 2009; Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation. 120:1513–1523. DOI: 10.1161/CIRCULATIONAHA.109.868885. PMID: 19786631.
Article
6. Li J, Hua Y, Miyagawa S, Zhang J, Li L, Liu L, Sawa Y. 2020; hiPSC-derived cardiac tissue for disease modeling and drug discovery. Int J Mol Sci. 21:8893. DOI: 10.3390/ijms21238893. PMID: 33255277. PMCID: PMC7727666.
Article
7. Lavon N, Benvenisty N. 2003; Differentiation and genetic manipulation of human embryonic stem cells and the analysis of the cardiovascular system. Trends Cardiovasc Med. 13:47–52. DOI: 10.1016/S1050-1738(02)00199-8. PMID: 12586438.
Article
8. Davis RP, van den Berg CW, Casini S, Braam SR, Mummery CL. 2011; Pluripotent stem cell models of cardiac disease and their implication for drug discovery and development. Trends Mol Med. 17:475–484. DOI: 10.1016/j.molmed.2011.05.001. PMID: 21703926.
Article
9. Machiraju P, Greenway SC. 2019; Current methods for the maturation of induced pluripotent stem cell-derived cardiomyo-cytes. World J Stem Cells. 11:33–43. DOI: 10.4252/wjsc.v11.i1.33. PMID: 30705713. PMCID: PMC6354100.
Article
10. Wu P, Deng G, Sai X, Guo H, Huang H, Zhu P. 2021; Maturation strategies and limitations of induced pluripotent stem cell-derived cardiomyocytes. Biosci Rep. 41:BSR20200833. DOI: 10.1042/BSR20200833. PMID: 33057659. PMCID: PMC8209171.
Article
11. Ahmed RE, Anzai T, Chanthra N, Uosaki H. 2020; A brief review of current maturation methods for human induced pluripotent stem cells-derived cardiomyocytes. Front Cell Dev Biol. 8:178. DOI: 10.3389/fcell.2020.00178. PMID: 32266260. PMCID: PMC7096382.
Article
12. Karbassi E, Fenix A, Marchiano S, Muraoka N, Nakamura K, Yang X, Murry CE. 2020; Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol. 17:341–359. DOI: 10.1038/s41569-019-0331-x. PMID: 32015528. PMCID: PMC7239749.
Article
13. Henderson CA, Gomez CG, Novak SM, Mi-Mi L, Gregorio CC. 2017; Overview of the muscle cytoskeleton. Compr Physiol. 7:891–944. DOI: 10.1002/cphy.c160033. PMID: 28640448. PMCID: PMC5890934.
Article
14. Gautel M, Djinović-Carugo K. 2016; The sarcomeric cytoskeleton: from molecules to motion. J Exp Biol. 219(Pt 2):135–145. DOI: 10.1242/jeb.124941. PMID: 26792323.
Article
15. Lundy SD, Zhu WZ, Regnier M, Laflamme MA. 2013; Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev. 22:1991–2002. DOI: 10.1089/scd.2012.0490. PMID: 23461462. PMCID: PMC3699903.
Article
16. Hinson JT, Chopra A, Nafissi N, Polacheck WJ, Benson CC, Swist S, Gorham J, Yang L, Schafer S, Sheng CC, Haghighi A, Homsy J, Hubner N, Church G, Cook SA, Linke WA, Chen CS, Seidman JG, Seidman CE. 2015; HEART DISEASE. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science. 349:982–986. DOI: 10.1126/science.aaa5458. PMID: 26315439. PMCID: PMC4618316.
Article
17. Mahdavi V, Lompre AM, Chambers AP, Nadal-Ginard B. 1984; Cardiac myosin heavy chain isozymic transitions during development and under pathological conditions are regulated at the level of mRNA availability. Eur Heart J. 5 Suppl F:181–191. DOI: 10.1093/eurheartj/5.suppl_F.181. PMID: 6241892.
Article
18. Iorga B, Schwanke K, Weber N, Wendland M, Greten S, Piep B, Dos Remedios CG, Martin U, Zweigerdt R, Kraft T, Brenner B. 2018; Differences in contractile function of myofibrils within human embryonic stem cell-derived cardio-myocytes vs. adult ventricular myofibrils are related to distinct sarcomeric protein isoforms. Front Physiol. 8:1111. DOI: 10.3389/fphys.2017.01111. PMID: 29403388. PMCID: PMC5780405.
Article
19. Weber N, Schwanke K, Greten S, Wendland M, Iorga B, Fischer M, Geers-Knörr C, Hegermann J, Wrede C, Fiedler J, Kempf H, Franke A, Piep B, Pfanne A, Thum T, Martin U, Brenner B, Zweigerdt R, Kraft T. 2016; Stiff matrix induces switch to pure β-cardiac myosin heavy chain expression in human ESC-derived cardiomyocytes. Basic Res Cardiol. 111:68. DOI: 10.1007/s00395-016-0587-9. PMID: 27743117.
Article
20. Gorza L, Ausoni S, Merciai N, Hastings KE, Schiaffino S. 1993; Regional differences in troponin I isoform switching during rat heart development. Dev Biol. 156:253–264. DOI: 10.1006/dbio.1993.1074. PMID: 8449370.
Article
21. Sasse S, Brand NJ, Kyprianou P, Dhoot GK, Wade R, Arai M, Periasamy M, Yacoub MH, Barton PJ. 1993; Troponin I gene expression during human cardiac development and in end-stage heart failure. Circ Res. 72:932–938. DOI: 10.1161/01.RES.72.5.932. PMID: 8477526.
Article
22. Hunkeler NM, Kullman J, Murphy AM. 1991; Troponin I isoform expression in human heart. Circ Res. 69:1409–1414. DOI: 10.1161/01.RES.69.5.1409. PMID: 1934363.
Article
23. Piccini I, Rao J, Seebohm G, Greber B. 2015; Human pluripotent stem cell-derived cardiomyocytes: genome-wide expression profiling of long-term in vitro maturation in comparison to human heart tissue. Genom Data. 4:69–72. DOI: 10.1016/j.gdata.2015.03.008. PMID: 26484180. PMCID: PMC4535944.
Article
24. Chuva de Sousa Lopes SM, Hassink RJ, Feijen A, van Rooijen MA, Doevendans PA, Tertoolen L, Brutel de la Rivière A, Mummery CL. 2006; Patterning the heart, a template for human cardiomyocyte development. Dev Dyn. 235:1994–2002. DOI: 10.1002/dvdy.20830. PMID: 16649168.
Article
25. Zuppinger C, Gibbons G, Dutta-Passecker P, Segiser A, Most H, Suter TM. 2017; Characterization of cytoskeleton features and maturation status of cultured human iPSC-derived cardiomyocytes. Eur J Histochem. 61:2763. DOI: 10.4081/ejh.2017.2763. PMID: 28735524. PMCID: PMC5484009.
Article
26. Agarkova I, Perriard JC. 2005; The M-band: an elastic web that crosslinks thick filaments in the center of the sarcomere. Trends Cell Biol. 15:477–485. DOI: 10.1016/j.tcb.2005.07.001. PMID: 16061384.
Article
27. Clément S, Stouffs M, Bettiol E, Kampf S, Krause KH, Chaponnier C, Jaconi M. 2007; Expression and function of alpha-smooth muscle actin during embryonic-stem-cell-derived cardiomyocyte differentiation. J Cell Sci. 120(Pt 2):229–238. DOI: 10.1242/jcs.03340. PMID: 17179203.
28. Suurmeijer AJ, Clément S, Francesconi A, Bocchi L, Angelini A, Van Veldhuisen DJ, Spagnoli LG, Gabbiani G, Orlandi A. 2003; Alpha-actin isoform distribution in normal and failing human heart: a morphological, morphometric, and biochemical study. J Pathol. 199:387–397. DOI: 10.1002/path.1311. PMID: 12579541.
Article
29. Kim HD. 1996; Expression of intermediate filament desmin and vimentin in the human fetal heart. Anat Rec. 246:271–278. DOI: 10.1002/(SICI)1097-0185(199610)246:2<271::AID-AR13>3.0.CO;2-L. PMID: 8888968.
Article
30. Yin S, Zhang X, Zhan C, Wu J, Xu J, Cheung J. 2005; Measuring single cardiac myocyte contractile force via moving a magnetic bead. Biophys J. 88:1489–1495. DOI: 10.1529/biophysj.104.048157. PMID: 15533919. PMCID: PMC1305150.
Article
31. Jacot JG, Martin JC, Hunt DL. 2010; Mechanobiology of cardiomyocyte development. J Biomech. 43:93–98. DOI: 10.1016/j.jbiomech.2009.09.014. PMID: 19819458. PMCID: PMC2813357.
Article
32. Liu J, Sun N, Bruce MA, Wu JC, Butte MJ. 2012; Atomic force mechanobiology of pluripotent stem cell-derived cardio-myocytes. PLoS One. 7:e37559. DOI: 10.1371/journal.pone.0037559. PMID: 22624048. PMCID: PMC3356329.
Article
33. Ribeiro AJ, Zaleta-Rivera K, Ashley EA, Pruitt BL. 2014; Stable, covalent attachment of laminin to microposts improves the contractility of mouse neonatal cardiomyocytes. ACS Appl Mater Interfaces. 6:15516–15526. DOI: 10.1021/am5042324. PMID: 25133578. PMCID: PMC4160263.
Article
34. Beussman KM, Rodriguez ML, Leonard A, Taparia N, Thompson CR, Sniadecki NJ. 2016; Micropost arrays for measuring stem cell-derived cardiomyocyte contractility. Methods. 94:43–50. DOI: 10.1016/j.ymeth.2015.09.005. PMID: 26344757. PMCID: PMC4761463.
Article
35. Oyunbaatar NE, Lee DH, Patil SJ, Kim ES, Lee DW. 2016; Biomechanical characterization of cardiomyocyte using PDMS pillar with microgrooves. Sensors (Basel). 16:1258. DOI: 10.3390/s16081258. PMID: 27517924. PMCID: PMC5017423.
Article
36. Oyunbaatar NE, Shanmugasundaram A, Lee DW. 2019; Contractile behaviors of cardiac muscle cells on mushroom-shaped micropillar arrays. Colloids Surf B Biointerfaces. 174:103–109. DOI: 10.1016/j.colsurfb.2018.10.058. PMID: 30445252.
Article
37. Jacot JG, McCulloch AD, Omens JH. 2008; Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys J. 95:3479–3487. DOI: 10.1529/biophysj.107.124545. PMID: 18586852. PMCID: PMC2547444.
Article
38. Edes IF, Czuriga D, Csányi G, Chlopicki S, Recchia FA, Borbély A, Galajda Z, Edes I, van der Velden J, Stienen GJ, Papp Z. 2007; Rate of tension redevelopment is not modulated by sarcomere length in permeabilized human, murine, and porcine cardiomyocytes. Am J Physiol Regul Integr Comp Physiol. 293:R20–R29. DOI: 10.1152/ajpregu.00537.2006. PMID: 17110532.
39. You J, Moon H, Lee BY, Jin JY, Chang ZE, Kim SY, Park J, Hwang YS, Kim J. 2014; Cardiomyocyte sensor responsive to changes in physical and chemical environments. J Biomech. 47:400–409. DOI: 10.1016/j.jbiomech.2013.11.013. PMID: 24360197.
Article
40. Oyunbaatar NE, Shanmugasundaram A, Jeong YJ, Lee BK, Kim ES, Lee DW. 2020; Micro-patterned SU-8 cantilever integrated with metal electrode for enhanced electromechanical stimulation of cardiac cells. Colloids Surf B Biointerfaces. 186:110682. DOI: 10.1016/j.colsurfb.2019.110682. PMID: 31846891.
Article
41. Vannier C, Chevassus H, Vassort G. 1996; Ca-dependence of isometric force kinetics in single skinned ventricular cardiomyocytes from rats. Cardiovasc Res. 32:580–586. DOI: 10.1016/S0008-6363(96)00103-4. PMID: 8881518.
Article
42. Chan V, Jeong JH, Bajaj P, Collens M, Saif T, Kong H, Bashir R. 2012; Multi-material bio-fabrication of hydrogel cantilevers and actuators with stereolithography. Lab Chip. 12:88–98. DOI: 10.1039/C1LC20688E. PMID: 22124724.
Article
43. Hasenfuss G, Mulieri LA, Blanchard EM, Holubarsch C, Leavitt BJ, Ittleman F, Alpert NR. 1991; Energetics of isometric force development in control and volume-overload human myocardium. Comparison with animal species. Circ Res. 68:836–846. DOI: 10.1161/01.RES.68.3.836. PMID: 1742869.
Article
44. Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD, Pabon L, Reinecke H, Murry CE. 2011; Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res. 109:47–59. DOI: 10.1161/CIRCRESAHA.110.237206. PMID: 21597009. PMCID: PMC3140796.
Article
45. Zimmermann WH, Schneiderbanger K, Schubert P, Didié M, Münzel F, Heubach JF, Kostin S, Neuhuber WL, Eschenhagen T. 2002; Tissue engineering of a differentiated cardiac muscle construct. Circ Res. 90:223–230. DOI: 10.1161/hh0202.103644. PMID: 11834716.
Article
46. Kita-Matsuo H, Barcova M, Prigozhina N, Salomonis N, Wei K, Jacot JG, Nelson B, Spiering S, Haverslag R, Kim C, Talantova M, Bajpai R, Calzolari D, Terskikh A, McCulloch AD, Price JH, Conklin BR, Chen HS, Mercola M. 2009; Lentiviral vectors and protocols for creation of stable hESC lines for fluorescent tracking and drug resistance selection of cardiomyocytes. PLoS One. 4:e5046. DOI: 10.1371/journal.pone.0005046. PMID: 19352491. PMCID: PMC2662416.
Article
47. Ulmer BM, Eschenhagen T. 2020; Human pluripotent stem cell-derived cardiomyocytes for studying energy metabolism. Biochim Biophys Acta Mol Cell Res. 1867:118471. DOI: 10.1016/j.bbamcr.2019.04.001. PMID: 30954570. PMCID: PMC7042711.
Article
48. Lopaschuk GD, Jaswal JS. 2010; Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J Cardiovasc Pharmacol. 56:130–140. DOI: 10.1097/FJC.0b013e3181e74a14. PMID: 20505524.
Article
49. Kannan S, Kwon C. 2020; Regulation of cardiomyocyte maturation during critical perinatal window. J Physiol. 598:2941–2956. DOI: 10.1113/JP276754. PMID: 30571853. PMCID: PMC7682257.
Article
50. Minai L, Martinovic J, Chretien D, Dumez F, Razavi F, Munnich A, Rötig A. 2008; Mitochondrial respiratory chain complex assembly and function during human fetal develop-ment. Mol Genet Metab. 94:120–126. DOI: 10.1016/j.ymgme.2007.12.007. PMID: 18249146.
Article
51. Palmer JW, Tandler B, Hoppel CL. 1977; Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem. 252:8731–8739. DOI: 10.1016/S0021-9258(19)75283-1. PMID: 925018.
Article
52. Saks V, Kuznetsov AV, Gonzalez-Granillo M, Tepp K, Timohhina N, Karu-Varikmaa M, Kaambre T, Dos Santos P, Boucher F, Guzun R. 2012; Intracellular energetic units regulate metabolism in cardiac cells. J Mol Cell Cardiol. 52:419–436. DOI: 10.1016/j.yjmcc.2011.07.015. PMID: 21816155.
Article
53. Dai DF, Danoviz ME, Wiczer B, Laflamme MA, Tian R. 2017; Mitochondrial maturation in human pluripotent stem cell derived cardiomyocytes. Stem Cells Int. 2017:5153625. DOI: 10.1155/2017/5153625. PMID: 28421116. PMCID: PMC5380852.
Article
54. Feric NT, Radisic M. 2016; Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv Drug Deliv Rev. 96:110–134. DOI: 10.1016/j.addr.2015.04.019. PMID: 25956564. PMCID: PMC4635107.
Article
55. Porter GA Jr, Hom J, Hoffman D, Quintanilla R, de Mesy Bentley K, Sheu SS. 2011; Bioenergetics, mitochondria, and cardiac myocyte differentiation. Prog Pediatr Cardiol. 31:75–81. DOI: 10.1016/j.ppedcard.2011.02.002. PMID: 21603067. PMCID: PMC3096664.
Article
56. Papanicolaou KN, Kikuchi R, Ngoh GA, Coughlan KA, Dominguez I, Stanley WC, Walsh K. 2012; Mitofusins 1 and 2 are essential for postnatal metabolic remodeling in heart. Circ Res. 111:1012–1026. DOI: 10.1161/CIRCRESAHA.112.274142. PMID: 22904094. PMCID: PMC3518037.
Article
57. Song M, Franco A, Fleischer JA, Zhang L, Dorn GW 2nd. 2017; Abrogating mitochondrial dynamics in mouse hearts accelerates mitochondrial senescence. Cell Metab. 26:872–883.e5. DOI: 10.1016/j.cmet.2017.09.023. PMID: 29107503. PMCID: PMC5718956.
Article
58. Willson TM, Brown PJ, Sternbach DD, Henke BR. 2000; The PPARs: from orphan receptors to drug discovery. J Med Chem. 43:527–550. DOI: 10.1021/jm990554g. PMID: 10691680.
Article
59. Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. 2000; Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial bio-genesis. J Clin Invest. 106:847–856. DOI: 10.1172/JCI10268. PMID: 11018072. PMCID: PMC517815.
Article
60. Cao T, Liccardo D, LaCanna R, Zhang X, Lu R, Finck BN, Leigh T, Chen X, Drosatos K, Tian Y. 2019; Fatty acid oxidation promotes cardiomyocyte proliferation rate but does not change cardiomyocyte number in infant mice. Front Cell Dev Biol. 7:42. DOI: 10.3389/fcell.2019.00042. PMID: 30968022. PMCID: PMC6440456.
Article
61. Giguère V. 1999; Orphan nuclear receptors: from gene to function. Endocr Rev. 20:689–725. DOI: 10.1210/er.20.5.689. PMID: 10529899.
Article
62. Giguère V, Yang N, Segui P, Evans RM. 1988; Identification of a new class of steroid hormone receptors. Nature. 331:91–94. DOI: 10.1038/331091a0. PMID: 3267207.
Article
63. Hong H, Yang L, Stallcup MR. 1999; Hormone-independent transcriptional activation and coactivator binding by novel orphan nuclear receptor ERR3. J Biol Chem. 274:22618–22626. DOI: 10.1074/jbc.274.32.22618. PMID: 10428842.
Article
64. Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM. 2002; Peroxisome proliferator-activated receptor gamma coactiva-tor 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem. 277:1645–1648. DOI: 10.1074/jbc.C100631200. PMID: 11733490.
Article
65. Sakamoto T, Matsuura TR, Wan S, Ryba DM, Kim JU, Won KJ, Lai L, Petucci C, Petrenko N, Musunuru K, Vega RB, Kelly DP. 2020; A critical role for estrogen-related receptor signaling in cardiac maturation. Circ Res. 126:1685–1702. DOI: 10.1161/CIRCRESAHA.119.316100. PMID: 32212902. PMCID: PMC7274895.
Article
66. Yang X, Pabon L, Murry CE. 2014; Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyo-cytes. Circ Res. 114:511–523. DOI: 10.1161/CIRCRESAHA.114.300558. PMID: 24481842. PMCID: PMC3955370.
67. Yi FF, Yang L, Li YH, Su PX, Cai J, Yang XC. 2009; Electro-physiological development of transplanted embryonic stem cell-derived cardiomyocytes in the hearts of syngeneic mice. Arch Med Res. 40:339–344. DOI: 10.1016/j.arcmed.2009.06.005. PMID: 19766895.
Article
68. Halbach M, Egert U, Hescheler J, Banach K. 2003; Estimation of action potential changes from field potential recordings in multicellular mouse cardiac myocyte cultures. Cell Physiol Biochem. 13:271–284. DOI: 10.1159/000074542. PMID: 14586171.
Article
69. Harris K, Aylott M, Cui Y, Louttit JB, McMahon NC, Sridhar A. 2013; Comparison of electrophysiological data from human-induced pluripotent stem cell-derived cardiomyo-cytes to functional preclinical safety assays. Toxicol Sci. 134:412–426. DOI: 10.1093/toxsci/kft113. PMID: 23690542.
Article
70. Kitaguchi T, Moriyama Y, Taniguchi T, Ojima A, Ando H, Uda T, Otabe K, Oguchi M, Shimizu S, Saito H, Morita M, Toratani A, Asayama M, Yamamoto W, Matsumoto E, Saji D, Ohnaka H, Tanaka K, Washio I, Miyamoto N. 2016; CSAHi study: evaluation of multi-electrode array in combination with human iPS cell-derived cardiomyocytes to predict drug-induced QT prolongation and arrhythmia--effects of 7 reference compounds at 10 facilities. J Pharmacol Toxicol Methods. 78:93–102. DOI: 10.1016/j.vascn.2015.12.002. PMID: 26657830.
Article
71. Tanaka T, Tohyama S, Murata M, Nomura F, Kaneko T, Chen H, Hattori F, Egashira T, Seki T, Ohno Y, Koshimizu U, Yuasa S, Ogawa S, Yamanaka S, Yasuda K, Fukuda K. 2009; In vitro pharmacologic testing using human induced pluripotent stem cell-derived cardiomyocytes. Biochem Biophys Res Commun. 385:497–502. DOI: 10.1016/j.bbrc.2009.05.073. PMID: 19464263.
Article
72. Gilchrist KH, Lewis GF, Gay EA, Sellgren KL, Grego S. 2015; High-throughput cardiac safety evaluation and multi-parameter arrhythmia profiling of cardiomyocytes using microelectrode arrays. Toxicol Appl Pharmacol. 288:249–257. DOI: 10.1016/j.taap.2015.07.024. PMID: 26232523.
Article
73. Clements M, Thomas N. 2014; High-throughput multi-parameter profiling of electrophysiological drug effects in human embryonic stem cell derived cardiomyocytes using multi-electrode arrays. Toxicol Sci. 140:445–461. DOI: 10.1093/toxsci/kfu084. PMID: 24812011.
Article
74. Peinkofer G, Burkert K, Urban K, Krausgrill B, Hescheler J, Saric T, Halbach M. 2016; From early embryonic to adult stage: comparative study of action potentials of native and pluripotent stem cell-derived cardiomyocytes. Stem Cells Dev. 25:1397–1406. DOI: 10.1089/scd.2016.0073. PMID: 27484788.
Article
75. Trépanier-Boulay V, Lupien MA, St-Michel C, Fiset C. 2004; Postnatal development of atrial repolarization in the mouse. Cardiovasc Res. 64:84–93. DOI: 10.1016/j.cardiores.2004.06.002. PMID: 15364616.
Article
76. Wang L, Feng ZP, Kondo CS, Sheldon RS, Duff HJ. 1996; Developmental changes in the delayed rectifier K+ channels in mouse heart. Circ Res. 79:79–85. DOI: 10.1161/01.RES.79.1.79. PMID: 8925572.
Article
77. Grandy SA, Trépanier-Boulay V, Fiset C. 2007; Postnatal development has a marked effect on ventricular repolarization in mice. Am J Physiol Heart Circ Physiol. 293:H2168–H2177. DOI: 10.1152/ajpheart.00521.2007. PMID: 17675571.
Article
78. Koivumäki JT, Naumenko N, Tuomainen T, Takalo J, Oksanen M, Puttonen KA, Lehtonen Š, Kuusisto J, Laakso M, Koistinaho J, Tavi P. 2018; Structural immaturity of human iPSC-derived cardiomyocytes: In Silico investigation of effects on function and disease modeling. Front Physiol. 9:80. DOI: 10.3389/fphys.2018.00080. PMID: 29467678. PMCID: PMC5808345.
Article
79. Veerman CC, Mengarelli I, Lodder EM, Kosmidis G, Bellin M, Zhang M, Dittmann S, Guan K, Wilde AAM, Schulze-Bahr E, Greber B, Bezzina CR, Verkerk AO. 2017; Switch from fetal to adult SCN5A isoform in human induced pluripotent stem cell-derived cardiomyocytes unmasks the cellular phenotype of a conduction disease-causing mutation. J Am Heart Assoc. 6:e005135. DOI: 10.1161/JAHA.116.005135. PMID: 28739862. PMCID: PMC5586268.
Article
80. Liu J, Laksman Z, Backx PH. 2016; The electrophysiological development of cardiomyocytes. Adv Drug Deliv Rev. 96:253–273. DOI: 10.1016/j.addr.2015.12.023. PMID: 26788696.
Article
81. Cordeiro JM, Nesterenko VV, Sicouri S, Goodrow RJ Jr, Treat JA, Desai M, Wu Y, Doss MX, Antzelevitch C, Di Diego JM. 2013; Identification and characterization of a transient outward K+ current in human induced pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol. 60:36–46. DOI: 10.1016/j.yjmcc.2013.03.014. PMID: 23542310. PMCID: PMC3779808.
Article
82. Bers DM. 2002; Cardiac excitation-contraction coupling. Nature. 415:198–205. DOI: 10.1038/415198a. PMID: 11805843.
Article
83. Cannell MB, Cheng H, Lederer WJ. 1995; The control of calcium release in heart muscle. Science. 268:1045–1049. DOI: 10.1126/science.7754384. PMID: 7754384.
Article
84. Adler CP, Friedburg H. 1986; Myocardial DNA content, ploidy level and cell number in geriatric hearts: post-mortem examinations of human myocardium in old age. J Mol Cell Cardiol. 18:39–53. DOI: 10.1016/S0022-2828(86)80981-6. PMID: 3950970.
Article
85. Brodsky WY, Arefyeva AM, Uryvaeva IV. 1980; Mitotic polyploidization of mouse heart myocytes during the first postnatal week. Cell Tissue Res. 210:133–144. DOI: 10.1007/BF00232149. PMID: 7407859.
Article
86. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J. 2009; Evidence for cardiomyocyte renewal in humans. Science. 324:98–102. DOI: 10.1126/science.1164680. PMID: 19342590. PMCID: PMC2991140.
Article
87. Chattergoon NN, Giraud GD, Louey S, Stork P, Fowden AL, Thornburg KL. 2012; Thyroid hormone drives fetal cardiomyocyte maturation. FASEB J. 26:397–408. DOI: 10.1096/fj.10-179895. PMID: 21974928. PMCID: PMC3250248.
Article
88. Hirose K, Payumo AY, Cutie S, Hoang A, Zhang H, Guyot R, Lunn D, Bigley RB, Yu H, Wang J, Smith M, Gillett E, Muroy SE, Schmid T, Wilson E, Field KA, Reeder DM, Maden M, Yartsev MM, Wolfgang MJ, Grützner F, Scanlan TS, Szweda LI, Buffenstein R, Hu G, Flamant F, Olgin JE, Huang GN. 2019; Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. Science. 364:184–188. DOI: 10.1126/science.aar2038. PMID: 30846611. PMCID: PMC6541389.
Article
89. Monroe TO, Hill MC, Morikawa Y, Leach JP, Heallen T, Cao S, Krijger PHL, de Laat W, Wehrens XHT, Rodney GG, Martin JF. 2019; YAP partially reprograms chromatin accessibility to directly induce adult cardiogenesis in vivo. Dev Cell. 48:765–779.e7. DOI: 10.1016/j.devcel.2019.01.017. PMID: 30773489. PMCID: PMC6435425.
90. Gabisonia K, Prosdocimo G, Aquaro GD, Carlucci L, Zentilin L, Secco I, Ali H, Braga L, Gorgodze N, Bernini F, Burchielli S, Collesi C, Zandonà L, Sinagra G, Piacenti M, Zacchigna S, Bussani R, Recchia FA, Giacca M. 2019; MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature. 569:418–422. DOI: 10.1038/s41586-019-1191-6. PMID: 31068698. PMCID: PMC6768803.
Article
91. Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K, Bernard S, Sjostrom SL, Szewczykowska M, Jackowska T, Dos Remedios C, Malm T, Andrä M, Jashari R, Nyengaard JR, Possnert G, Jovinge S, Druid H, Frisén J. 2015; Dynamics of cell generation and turnover in the human heart. Cell. 161:1566–1575. DOI: 10.1016/j.cell.2015.05.026. PMID: 26073943.
Article
92. Brodsky VYa, Sarkisov DS, Arefyeva AM, Panova NW, Gvasava IG. 1994; Polyploidy in cardiac myocytes of normal and hypertrophic human hearts; range of values. Virchows Arch. 424:429–435. DOI: 10.1007/BF00190566. PMID: 8205355.
Article
93. Laflamme MA, Murry CE. 2011; Heart regeneration. Nature. 473:326–335. DOI: 10.1038/nature10147. PMID: 21593865. PMCID: PMC4091722.
Article
94. Patterson M, Barske L, Van Handel B, Rau CD, Gan P, Sharma A, Parikh S, Denholtz M, Huang Y, Yamaguchi Y, Shen H, Allayee H, Crump JG, Force TI, Lien CL, Makita T, Lusis AJ, Kumar SR, Sucov HM. 2017; Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat Genet. 49:1346–1353. DOI: 10.1038/ng.3929. PMID: 28783163. PMCID: PMC5736145.
Article
95. González-Rosa JM, Sharpe M, Field D, Soonpaa MH, Field LJ, Burns CE, Burns CG. 2018; Myocardial polyploidization creates a barrier to heart regeneration in zebrafish. Dev Cell. 44:433–446.e7. DOI: 10.1016/j.devcel.2018.01.021. PMID: 29486195. PMCID: PMC5830170.
Article
96. Kang MJ, Kim JS, Chae SW, Koh KN, Koh GY. 1997; Cyclins and cyclin dependent kinases during cardiac development. Mol Cells. 7:360–366. PMID: 9264023.
97. Uosaki H, Cahan P, Lee DI, Wang S, Miyamoto M, Fernandez L, Kass DA, Kwon C. 2015; Transcriptional landscape of cardiomyocyte maturation. Cell Rep. 13:1705–1716. DOI: 10.1016/j.celrep.2015.10.032. PMID: 26586429. PMCID: PMC4662925.
Article
98. Mohamed TMA, Ang YS, Radzinsky E, Zhou P, Huang Y, Elfenbein A, Foley A, Magnitsky S, Srivastava D. 2018; Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell. 173:104–116.e12. DOI: 10.1016/j.cell.2018.02.014. PMID: 29502971. PMCID: PMC5973786.
Article
99. van den Berg CW, Okawa S, Chuva de Sousa Lopes SM, van Iperen L, Passier R, Braam SR, Tertoolen LG, del Sol A, Davis RP, Mummery CL. 2015; Transcriptome of human foetal heart compared with cardiomyocytes from pluripotent stem cells. Development. 142:3231–3238. DOI: 10.1242/dev.123810. PMID: 26209647.
Article
100. DeLaughter DM, Bick AG, Wakimoto H, McKean D, Gorham JM, Kathiriya IS, Hinson JT, Homsy J, Gray J, Pu W, Bruneau BG, Seidman JG, Seidman CE. 2016; Single-cell resolution of temporal gene expression during heart develop-ment. Dev Cell. 39:480–490. DOI: 10.1016/j.devcel.2016.10.001. PMID: 27840107. PMCID: PMC5198784.
Article
101. Friedman CE, Nguyen Q, Lukowski SW, Helfer A, Chiu HS, Miklas J, Levy S, Suo S, Han JJ, Osteil P, Peng G, Jing N, Baillie GJ, Senabouth A, Christ AN, Bruxner TJ, Murry CE, Wong ES, Ding J, Wang Y, Hudson J, Ruohola-Baker H, Bar-Joseph Z, Tam PPL, Powell JE, Palpant NJ. 2018; Single-cell transcriptomic analysis of cardiac differentiation from human PSCs reveals HOPX-dependent cardiomyocyte maturation. Cell Stem Cell. 23:586–598.e8. DOI: 10.1016/j.stem.2018.09.009. PMID: 30290179. PMCID: PMC6220122.
Article
102. Guo Y, Pu WT. 2020; Cardiomyocyte maturation: new phase in development. Circ Res. 126:1086–1106. DOI: 10.1161/CIRCRESAHA.119.315862. PMID: 32271675. PMCID: PMC7199445.
103. Arsenian S, Weinhold B, Oelgeschläger M, Rüther U, Nordheim A. 1998; Serum response factor is essential for mesoderm formation during mouse embryogenesis. EMBO J. 17:6289–6299. DOI: 10.1093/emboj/17.21.6289. PMID: 9799237. PMCID: PMC1170954.
Article
104. Parlakian A, Tuil D, Hamard G, Tavernier G, Hentzen D, Concordet JP, Paulin D, Li Z, Daegelen D. 2004; Targeted inactivation of serum response factor in the developing heart results in myocardial defects and embryonic lethality. Mol Cell Biol. 24:5281–5289. DOI: 10.1128/MCB.24.12.5281-5289.2004. PMID: 15169892. PMCID: PMC419888.
Article
105. Parlakian A, Charvet C, Escoubet B, Mericskay M, Molkentin JD, Gary-Bobo G, De Windt LJ, Ludosky MA, Paulin D, Daegelen D, Tuil D, Li Z. 2005; Temporally controlled onset of dilated cardiomyopathy through disruption of the SRF gene in adult heart. Circulation. 112:2930–2939. DOI: 10.1161/CIRCULATIONAHA.105.533778. PMID: 16260633.
Article
106. Guo Y, Jardin BD, Zhou P, Sethi I, Akerberg BN, Toepfer CN, Ai Y, Li Y, Ma Q, Guatimosim S, Hu Y, Varuzhanyan G, VanDusen NJ, Zhang D, Chan DC, Yuan GC, Seidman CE, Seidman JG, Pu WT. 2018; Hierarchical and stage-specific regulation of murine cardiomyocyte maturation by serum response factor. Nat Commun. 9:3837. DOI: 10.1038/s41467-018-06347-2. PMID: 30242271. PMCID: PMC6155060.
Article
107. Haddad F, Jiang W, Bodell PW, Qin AX, Baldwin KM. 2010; Cardiac myosin heavy chain gene regulation by thyroid hormone involves altered histone modifications. Am J Physiol Heart Circ Physiol. 299:H1968–H1980. DOI: 10.1152/ajpheart.00644.2010. PMID: 20833952. PMCID: PMC3006294.
Article
108. Rog-Zielinska EA, Richardson RV, Denvir MA, Chapman KE. 2014; Glucocorticoids and foetal heart maturation; implications for prematurity and foetal programming. J Mol Endocrinol. 52:R125–R135. DOI: 10.1530/JME-13-0204. PMID: 24299741.
Article
109. Rog-Zielinska EA, Thomson A, Kenyon CJ, Brownstein DG, Moran CM, Szumska D, Michailidou Z, Richardson J, Owen E, Watt A, Morrison H, Forrester LM, Bhattacharya S, Holmes MC, Chapman KE. 2013; Glucocorticoid receptor is required for foetal heart maturation. Hum Mol Genet. 22:3269–3282. DOI: 10.1093/hmg/ddt182. PMID: 23595884.
Article
110. Lai L, Leone TC, Zechner C, Schaeffer PJ, Kelly SM, Flanagan DP, Medeiros DM, Kovacs A, Kelly DP. 2008; Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart. Genes Dev. 22:1948–1961. DOI: 10.1101/gad.1661708. PMID: 18628400. PMCID: PMC2492740.
Article
111. Martin OJ, Lai L, Soundarapandian MM, Leone TC, Zorzano A, Keller MP, Attie AD, Muoio DM, Kelly DP. 2014; A role for peroxisome proliferator-activated receptor γ coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth. Circ Res. 114:626–636. DOI: 10.1161/CIRCRESAHA.114.302562. PMID: 24366168. PMCID: PMC4061768.
Article
112. Murphy S, Miyamoto M, Kervadec A, Kannan S, Tampakakis E, Kambhampati S, Lin BL, Paek S, Andersen P, Lee D, Zhu R, An SS, Kass DA, Uosaki H, Colas AR, Kwon C. 2020; PGC1/PPAR drive cardiomyocyte maturation through regulation of Yap1 and SF3B2. bioRxiv. doi: 10.1101/2020.02.06.937797. [Epub ahead of print]. DOI: 10.1101/2020.02.06.937797.
Article
113. Wang T, McDonald C, Petrenko NB, Leblanc M, Wang T, Giguere V, Evans RM, Patel VV, Pei L. 2015; Estrogen-related receptor α (ERRα) and ERRγ are essential coordinators of cardiac metabolism and function. Mol Cell Biol. 35:1281–1298. DOI: 10.1128/MCB.01156-14. PMID: 25624346. PMCID: PMC4355525.
Article
114. Fu JD, Rushing SN, Lieu DK, Chan CW, Kong CW, Geng L, Wilson KD, Chiamvimonvat N, Boheler KR, Wu JC, Keller G, Hajjar RJ, Li RA. 2011; Distinct roles of microRNA-1 and -499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyo-cytes. PLoS One. 6:e27417. DOI: 10.1371/journal.pone.0027417. PMID: 22110643. PMCID: PMC3217986.
Article
115. Kuppusamy KT, Jones DC, Sperber H, Madan A, Fischer KA, Rodriguez ML, Pabon L, Zhu WZ, Tulloch NL, Yang X, Sniadecki NJ, Laflamme MA, Ruzzo WL, Murry CE, Ruohola-Baker H. 2015; Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes. Proc Natl Acad Sci U S A. 112:E2785–E2794. DOI: 10.1073/pnas.1424042112. PMID: 25964336. PMCID: PMC4450404.
Article
116. Poon EN, Hao B, Guan D, Jun Li M, Lu J, Yang Y, Wu B, Wu SC, Webb SE, Liang Y, Miller AL, Yao X, Wang J, Yan B, Boheler KR. 2018; Integrated transcriptomic and regulatory network analyses identify microRNA-200c as a novel repressor of human pluripotent stem cell-derived cardiomyocyte differentiation and maturation. Cardiovasc Res. 114:894–906. DOI: 10.1093/cvr/cvy019. PMID: 29373717.
Article
117. Miklas JW, Clark E, Levy S, Detraux D, Leonard A, Beussman K, Showalter MR, Smith AT, Hofsteen P, Yang X, Macadangdang J, Manninen T, Raftery D, Madan A, Suomalainen A, Kim DH, Murry CE, Fiehn O, Sniadecki NJ, Wang Y, Ruohola-Baker H. 2019; TFPa/HADHA is required for fatty acid beta-oxidation and cardiolipin re-modeling in human cardiomyocytes. Nat Commun. 10:4671. DOI: 10.1038/s41467-019-12482-1. PMID: 31604922. PMCID: PMC6789043.
Article
118. Lee DS, Chen JH, Lundy DJ, Liu CH, Hwang SM, Pabon L, Shieh RC, Chen CC, Wu SN, Yan YT, Lee ST, Chiang PM, Chien S, Murry CE, Hsieh PC. 2015; Defined microRNAs induce aspects of maturation in mouse and human embryonic-stem-cell-derived cardiomyocytes. Cell Rep. 12:1960–1967. DOI: 10.1016/j.celrep.2015.08.042. PMID: 26365191.
Article
119. Gilsbach R, Preissl S, Grüning BA, Schnick T, Burger L, Benes V, Würch A, Bönisch U, Günther S, Backofen R, Fleischmann BK, Schübeler D, Hein L. 2014; Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat Commun. 5:5288. DOI: 10.1038/ncomms6288. PMID: 25335909. PMCID: PMC4220495.
Article
120. Ai S, Peng Y, Li C, Gu F, Yu X, Yue Y, Ma Q, Chen J, Lin Z, Zhou P, Xie H, Prendiville TW, Zheng W, Liu Y, Orkin SH, Wang DZ, Yu J, Pu WT, He A. 2017; EED orchestration of heart maturation through interaction with HDACs is H3K27me3-independent. Elife. 6:e24570. DOI: 10.7554/eLife.24570. PMID: 28394251. PMCID: PMC5400508.
Article
121. Chow MZ, Geng L, Kong CW, Keung W, Fung JC, Boheler KR, Li RA. 2013; Epigenetic regulation of the electrophysiolo-gical phenotype of human embryonic stem cell-derived ventricular cardiomyocytes: insights for driven maturation and hypertrophic growth. Stem Cells Dev. 22:2678–2690. DOI: 10.1089/scd.2013.0125. PMID: 23656529. PMCID: PMC3780424.
Article
122. Biermann M, Cai W, Lang D, Hermsen J, Profio L, Zhou Y, Czirok A, Isai DG, Napiwocki BN, Rodriguez AM, Brown ME, Woon MT, Shao A, Han T, Park D, Hacker TA, Crone WC, Burlingham WJ, Glukhov AV, Ge Y, Kamp TJ. 2019; Epigenetic priming of human pluripotent stem cell-derived cardiac progenitor cells accelerates cardiomyocyte maturation. Stem Cells. 37:910–923. DOI: 10.1002/stem.3021. PMID: 31087611. PMCID: PMC6599574.
Article
123. VanDusen NJ, Lee JY, Gu W, Sethi I, Zheng Y, King JS, Zhou PZ, Suo S, Guo Y, Ma Q, Yuan GC, Pu WT. 2019; In vivo CRISPR screening identifies RNF20/40 as epigenetic regulators of cardiomyocyte maturation. bioRxiv. doi: 10.1101/808402. [Epub ahead of print]. DOI: 10.1101/808402. PMID: 34290256. PMCID: PMC8295283.
Article
124. Hang CT, Yang J, Han P, Cheng HL, Shang C, Ashley E, Zhou B, Chang CP. 2010; Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature. 466:62–67. DOI: 10.1038/nature09130. PMID: 20596014. PMCID: PMC2898892.
Article
125. Gomez-Velazquez M, Badia-Careaga C, Lechuga-Vieco AV, Nieto-Arellano R, Tena JJ, Rollan I, Alvarez A, Torroja C, Caceres EF, Roy AR, Galjart N, Delgado-Olguin P, Sanchez-Cabo F, Enriquez JA, Gomez-Skarmeta JL, Manzanares M. 2017; CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart. PLoS Genet. 13:e1006985. DOI: 10.1371/journal.pgen.1006985. PMID: 28846746. PMCID: PMC5591014.
Article
126. Poon E, Keung W, Liang Y, Ramalingam R, Yan B, Zhang S, Chopra A, Moore J, Herren A, Lieu DK, Wong HS, Weng Z, Wong OT, Lam YW, Tomaselli GF, Chen C, Boheler KR, Li RA. 2015; Proteomic analysis of human pluripotent stem cell-derived, fetal, and adult ventricular cardiomyocytes reveals pathways crucial for cardiac metabolism and maturation. Circ Cardiovasc Genet. 8:427–436. DOI: 10.1161/CIRCGENETICS.114.000918. PMID: 25759434.
Article
127. Cai W, Zhang J, de Lange WJ, Gregorich ZR, Karp H, Farrell ET, Mitchell SD, Tucholski T, Lin Z, Biermann M, McIlwain SJ, Ralphe JC, Kamp TJ, Ge Y. 2019; An unbiased proteomics method to assess the maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Res. 125:936–953. DOI: 10.1161/CIRCRESAHA.119.315305. PMID: 31573406. PMCID: PMC6852699.
Article
128. Cho GS, Lee DI, Tampakakis E, Murphy S, Andersen P, Uosaki H, Chelko S, Chakir K, Hong I, Seo K, Chen HV, Chen X, Basso C, Houser SR, Tomaselli GF, O'Rourke B, Judge DP, Kass DA, Kwon C. 2017; Neonatal transplantation confers maturation of PSC-derived cardiomyocytes conducive to modeling cardiomyopathy. Cell Rep. 18:571–582. DOI: 10.1016/j.celrep.2016.12.040. PMID: 28076798. PMCID: PMC5232412.
Article
129. Ellingsen O, Davidoff AJ, Prasad SK, Berger HJ, Springhorn JP, Marsh JD, Kelly RA, Smith TW. 1993; Adult rat ventricular myocytes cultured in defined medium: phenotype and electromechanical function. Am J Physiol. 265(2 Pt 2):H747–H754. DOI: 10.1152/ajpheart.1993.265.2.H747. PMID: 8368376.
Article
130. Ribeiro AJ, Ang YS, Fu JD, Rivas RN, Mohamed TM, Higgs GC, Srivastava D, Pruitt BL. 2015; Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness. Proc Natl Acad Sci U S A. 112:12705–12710. DOI: 10.1073/pnas.1508073112. PMID: 26417073. PMCID: PMC4611612.
Article
131. Werley CA, Chien MP, Gaublomme J, Shekhar K, Butty V, Yi BA, Kralj JM, Bloxham W, Boyer LA, Regev A, Cohen AE. 2017; Geometry-dependent functional changes in iPSC-derived cardiomyocytes probed by functional imaging and RNA sequencing. PLoS One. 12:e0172671. DOI: 10.1371/journal.pone.0172671. PMID: 28333933. PMCID: PMC5363803.
Article
132. Buikema JW, Lee S, Goodyer WR, Maas RG, Chirikian O, Li G, Miao Y, Paige SL, Lee D, Wu H, Paik DT, Rhee S, Tian L, Galdos FX, Puluca N, Beyersdorf B, Hu J, Beck A, Venkamatran S, Swami S, Wijnker P, Schuldt M, Dorsch LM, van Mil A, Red-Horse K, Wu JY, Geisen C, Hesse M, Serpooshan V, Jovinge S, Fleischmann BK, Doevendans PA, van der Velden J, Garcia KC, Wu JC, Sluijter JPG, Wu SM. 2020; Wnt activation and reduced cell-cell contact synergistically induce massive expansion of functional human iPSC-derived cardiomyocytes. Cell Stem Cell. 27:50–63.e5. DOI: 10.1016/j.stem.2020.06.001. PMID: 32619518. PMCID: PMC7334437.
Article
133. Martewicz S, Serena E, Zatti S, Keller G, Elvassore N. 2017; Substrate and mechanotransduction influence SERCA2a localization in human pluripotent stem cell-derived cardiomyocytes affecting functional performance. Stem Cell Res. 25:107–114. DOI: 10.1016/j.scr.2017.10.011. PMID: 29125993.
Article
134. Feaster TK, Cadar AG, Wang L, Williams CH, Chun YW, Hempel JE, Bloodworth N, Merryman WD, Lim CC, Wu JC, Knollmann BC, Hong CC. 2015; Matrigel mattress: a method for the generation of single contracting human-induced pluripotent stem cell-derived cardiomyocytes. Circ Res. 117:995–1000. DOI: 10.1161/CIRCRESAHA.115.307580. PMID: 26429802. PMCID: PMC4670592.
135. Ronaldson-Bouchard K, Ma SP, Yeager K, Chen T, Song L, Sirabella D, Morikawa K, Teles D, Yazawa M, Vunjak-Novakovic G. 2018; Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature. 556:239–243. DOI: 10.1038/s41586-018-0016-3. PMID: 29618819. PMCID: PMC5895513.
Article
136. Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, Freed LE, Vunjak-Novakovic G. 2004; Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci U S A. 101:18129–18134. DOI: 10.1073/pnas.0407817101. PMID: 15604141. PMCID: PMC539727.
Article
137. Sathaye A, Bursac N, Sheehy S, Tung L. 2006; Electrical pacing counteracts intrinsic shortening of action potential duration of neonatal rat ventricular cells in culture. J Mol Cell Cardiol. 41:633–641. DOI: 10.1016/j.yjmcc.2006.06.076. PMID: 16950369.
Article
138. Nunes SS, Miklas JW, Liu J, Aschar-Sobbi R, Xiao Y, Zhang B, Jiang J, Massé S, Gagliardi M, Hsieh A, Thavandiran N, Laflamme MA, Nanthakumar K, Gross GJ, Backx PH, Keller G, Radisic M. 2013; Biowire: a platform for maturation of human pluripotent stem cell-derived cardio-myocytes. Nat Methods. 10:781–787. DOI: 10.1038/nmeth.2524. PMID: 23793239. PMCID: PMC4071061.
Article
139. Sun X, Nunes SS. 2016; Biowire platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Methods. 101:21–26. DOI: 10.1016/j.ymeth.2015.11.005. PMID: 26546730.
Article
140. Troncoso R, Ibarra C, Vicencio JM, Jaimovich E, Lavandero S. 2014; New insights into IGF-1 signaling in the heart. Trends Endocrinol Metab. 25:128–137. DOI: 10.1016/j.tem.2013.12.002. PMID: 24380833.
Article
141. Nakamura M, Sadoshima J. 2018; Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 15:387–407. DOI: 10.1038/s41569-018-0007-y. PMID: 29674714.
Article
142. Kim J, Wende AR, Sena S, Theobald HA, Soto J, Sloan C, Wayment BE, Litwin SE, Holzenberger M, LeRoith D, Abel ED. 2008; Insulin-like growth factor I receptor signaling is required for exercise-induced cardiac hypertrophy. Mol Endocrinol. 22:2531–2543. DOI: 10.1210/me.2008-0265. PMID: 18801929. PMCID: PMC2582541.
Article
143. McDevitt TC, Laflamme MA, Murry CE. 2005; Proliferation of cardiomyocytes derived from human embryonic stem cells is mediated via the IGF/PI 3-kinase/Akt signaling pathway. J Mol Cell Cardiol. 39:865–873. DOI: 10.1016/j.yjmcc.2005.09.007. PMID: 16242146. PMCID: PMC3505759.
Article
144. McMullen JR, Shioi T, Huang WY, Zhang L, Tarnavski O, Bisping E, Schinke M, Kong S, Sherwood MC, Brown J, Riggi L, Kang PM, Izumo S. 2004; The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110alpha) pathway. J Biol Chem. 279:4782–4793. DOI: 10.1074/jbc.M310405200. PMID: 14597618.
Article
145. Rupert CE, Coulombe KLK. 2017; IGF1 and NRG1 enhance proliferation, metabolic maturity, and the force-frequency response in hESC-derived engineered cardiac tissues. Stem Cells Int. 2017:7648409. DOI: 10.1155/2017/7648409. PMID: 28951744. PMCID: PMC5603111.
Article
146. Yang X, Rodriguez ML, Leonard A, Sun L, Fischer KA, Wang Y, Ritterhoff J, Zhao L, Kolwicz SC Jr, Pabon L, Reinecke H, Sniadecki NJ, Tian R, Ruohola-Baker H, Xu H, Murry CE. 2019; Fatty acids enhance the maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cell Reports. 13:657–668. DOI: 10.1016/j.stemcr.2019.08.013. PMID: 31564645. PMCID: PMC6829750.
Article
147. Correia C, Koshkin A, Duarte P, Hu D, Teixeira A, Domian I, Serra M, Alves PM. 2017; Distinct carbon sources affect structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Sci Rep. 7:8590. DOI: 10.1038/s41598-017-08713-4. PMID: 28819274. PMCID: PMC5561128.
Article
148. Nakano H, Minami I, Braas D, Pappoe H, Wu X, Sagadevan A, Vergnes L, Fu K, Morselli M, Dunham C, Ding X, Stieg AZ, Gimzewski JK, Pellegrini M, Clark PM, Reue K, Lusis AJ, Ribalet B, Kurdistani SK, Christofk H, Nakatsuji N, Nakano A. 2017; Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis. Elife. 6:e29330. DOI: 10.7554/eLife.29330. PMID: 29231167. PMCID: PMC5726851.
Article
149. Hu D, Linders A, Yamak A, Correia C, Kijlstra JD, Garakani A, Xiao L, Milan DJ, van der Meer P, Serra M, Alves PM, Domian IJ. 2018; Metabolic maturation of human pluripotent stem cell-derived cardiomyocytes by inhibition of HIF1α and LDHA. Circ Res. 123:1066–1079. DOI: 10.1161/CIRCRESAHA.118.313249. PMID: 30355156. PMCID: PMC6208155.
Article
150. Yang X, Rodriguez M, Pabon L, Fischer KA, Reinecke H, Regnier M, Sniadecki NJ, Ruohola-Baker H, Murry CE. 2014; Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. J Mol Cell Cardiol. 72:296–304. DOI: 10.1016/j.yjmcc.2014.04.005. PMID: 24735830. PMCID: PMC4041732.
Article
151. Rog-Zielinska EA, Craig MA, Manning JR, Richardson RV, Gowans GJ, Dunbar DR, Gharbi K, Kenyon CJ, Holmes MC, Hardie DG, Smith GL, Chapman KE. 2015; Glucocorticoids promote structural and functional maturation of foetal cardiomyocytes: a role for PGC-1α. Cell Death Differ. 22:1106–1116. DOI: 10.1038/cdd.2014.181. PMID: 25361084. PMCID: PMC4572859.
Article
152. Huang CY, Peres Moreno Maia-Joca R, Ong CS, Wilson I, DiSilvestre D, Tomaselli GF, Reich DH. 2020; Enhancement of human iPSC-derived cardiomyocyte maturation by chemical conditioning in a 3D environment. J Mol Cell Cardiol. 138:1–11. DOI: 10.1016/j.yjmcc.2019.10.001. PMID: 31655038.
Article
153. Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D'Antoni ML, Debuque R, Chandran A, Wang L, Arora K, Rosenthal NA, Tallquist MD. 2016; Revisiting cardiac cellular composition. Circ Res. 118:400–409. DOI: 10.1161/CIRCRESAHA.115.307778. PMID: 26635390. PMCID: PMC4744092.
Article
154. Kim C, Majdi M, Xia P, Wei KA, Talantova M, Spiering S, Nelson B, Mercola M, Chen HS. 2010; Non-cardiomyocytes influence the electrophysiological maturation of human embryonic stem cell-derived cardiomyocytes during differen-tiation. Stem Cells Dev. 19:783–795. DOI: 10.1089/scd.2009.0349. PMID: 20001453. PMCID: PMC3135229.
Article
155. Yoshida S, Miyagawa S, Fukushima S, Kawamura T, Kashiyama N, Ohashi F, Toyofuku T, Toda K, Sawa Y. 2018; Maturation of human induced pluripotent stem cell-derived cardiomyocytes by soluble factors from human mesenchymal stem cells. Mol Ther. 26:2681–2695. DOI: 10.1016/j.ymthe.2018.08.012. PMID: 30217728. PMCID: PMC6224789.
Article
156. Ieda M, Tsuchihashi T, Ivey KN, Ross RS, Hong TT, Shaw RM, Srivastava D. 2009; Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell. 16:233–244. DOI: 10.1016/j.devcel.2008.12.007. PMID: 19217425. PMCID: PMC2664087.
Article
157. Dunn KK, Reichardt IM, Simmons AD, Jin G, Floy ME, Hoon KM, Palecek SP. 2019; Coculture of endothelial cells with human pluripotent stem cell-derived cardiac progenitors reveals a differentiation stage-specific enhancement of cardiomyocyte maturation. Biotechnol J. 14:e1800725. DOI: 10.1002/biot.201800725. PMID: 30927511. PMCID: PMC6849481.
Article
158. Ulmer BM, Stoehr A, Schulze ML, Patel S, Gucek M, Mannhardt I, Funcke S, Murphy E, Eschenhagen T, Hansen A. 2018; Contractile work contributes to maturation of energy metabolism in hiPSC-derived cardiomyocytes. Stem Cell Reports. 10:834–847. DOI: 10.1016/j.stemcr.2018.01.039. PMID: 29503093. PMCID: PMC5919410.
Article
159. Lemoine MD, Mannhardt I, Breckwoldt K, Prondzynski M, Flenner F, Ulmer B, Hirt MN, Neuber C, Horváth A, Kloth B, Reichenspurner H, Willems S, Hansen A, Eschenhagen T, Christ T. 2017; Human iPSC-derived cardiomyocytes cultured in 3D engineered heart tissue show physiological upstroke velocity and sodium current density. Sci Rep. 7:5464. DOI: 10.1038/s41598-017-05600-w. PMID: 28710467. PMCID: PMC5511281.
Article
160. Zhang D, Shadrin IY, Lam J, Xian HQ, Snodgrass HR, Bursac N. 2013; Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyo-cytes. Biomaterials. 34:5813–5820. DOI: 10.1016/j.biomaterials.2013.04.026. PMID: 23642535. PMCID: PMC3660435.
Article
161. Ravenscroft SM, Pointon A, Williams AW, Cross MJ, Sidaway JE. 2016; Cardiac Non-myocyte cells show enhanced pharmacological function suggestive of contractile maturity in stem cell derived cardiomyocyte microtissues. Toxicol Sci. 152:99–112. DOI: 10.1093/toxsci/kfw069. PMID: 27125969. PMCID: PMC4922542.
Article
162. Giacomelli E, Meraviglia V, Campostrini G, Cochrane A, Cao X, van Helden RWJ, Krotenberg Garcia A, Mircea M, Kostidis S, Davis RP, van Meer BJ, Jost CR, Koster AJ, Mei H, Míguez DG, Mulder AA, Ledesma-Terrón M, Pompilio G, Sala L, Salvatori DCF, Slieker RC, Sommariva E, de Vries AAF, Giera M, Semrau S, Tertoolen LGJ, Orlova VV, Bellin M, Mummery CL. 2020; Human-iPSC-derived cardiac stromal cells enhance maturation in 3D cardiac microtissues and reveal non-cardiomyocyte contributions to heart disease. Cell Stem Cell. 26:862–879.e11. DOI: 10.1016/j.stem.2020.05.004. PMID: 32459996. PMCID: PMC7284308.
Article
163. Godier-Furnémont AF, Tiburcy M, Wagner E, Dewenter M, Lämmle S, El-Armouche A, Lehnart SE, Vunjak-Novakovic G, Zimmermann WH. 2015; Physiologic force-frequency response in engineered heart muscle by electromechanical stimulation. Biomaterials. 60:82–91. DOI: 10.1016/j.biomaterials.2015.03.055. PMID: 25985155. PMCID: PMC4921199.
Article
164. Kadota S, Pabon L, Reinecke H, Murry CE. 2017; In vivo maturation of human induced pluripotent stem cell-derived cardiomyocytes in neonatal and adult rat hearts. Stem Cell Reports. 8:278–289. DOI: 10.1016/j.stemcr.2016.10.009. PMID: 28065644. PMCID: PMC5311430.
Article
165. Liu YW, Chen B, Yang X, Fugate JA, Kalucki FA, Futakuchi-Tsuchida A, Couture L, Vogel KW, Astley CA, Baldessari A, Ogle J, Don CW, Steinberg ZL, Seslar SP, Tuck SA, Tsuchida H, Naumova AV, Dupras SK, Lyu MS, Lee J, Hailey DW, Reinecke H, Pabon L, Fryer BH, MacLellan WR, Thies RS, Murry CE. 2018; Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat Biotechnol. 36:597–605. DOI: 10.1038/nbt.4162. PMID: 29969440. PMCID: PMC6329375.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr