Int J Stem Cells.  2023 May;16(2):156-167. 10.15283/ijsc22183.

Strategic Application of Epigenetic Regulators for Efficient Neuronal Reprogramming of Human Fibroblasts

Affiliations
  • 1Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, Korea
  • 2Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, India
  • 3Cellapeutics Bio, Seongnam, Korea

Abstract

Background and Objectives
Cellular reprogramming in regenerative medicine holds great promise for treating patients with neurological disorders. In this regard, small molecule-mediated cellular conversion has attracted special attention because of its ease of reproducibility, applicability, and fewer safety concerns. However, currently available protocols for the direct conversion of somatic cells to neurons are limited in clinical application due of their complex nature, lengthy process, and low conversion efficiency.
Methods and Results
Here, we report a new protocol involving chemical-based direct conversion of human fibroblasts (HF) to matured neuron-like cells with a short duration and high conversion efficiency using temporal and strategic dual epigenetic regulation. In this protocol, epigenetic modulation by inhibition of histone deacetylase and bromodomain enabled to overcome “recalcitrant” nature of adult fibroblasts and shorten the duration of neuronal reprogramming. We further observed that an extended epigenetic regulation is necessary to maintain the induced neuronal program to generate a homogenous population of neuron-like cells.
Conclusions
Therefore, our study provides a new protocol to produce neurons-like cells and highlights the need of proper epigenetic resetting to establish and maintain neuronal program in HF.

Keyword

Direct reprogramming; Patient-specific; Regenerative medicine; Dual epigenetic modification; Neurons

Figure

  • Fig. 1 Dual HDAC/BET inhibitors for the induction of neuronal programming. (a) Schematic design of protocol 1 for the neuronal conversion of human fibroblast into neurons. (b) Bright-field images showing the morphological changes of cells over six days using neuronal induction and neuronal maturation protocol. Scale bar, 100 μm. (c) TUJ1 and DCX immunostaining of human fibroblast cells after two days of exposure to 6C. Scale bar, 100 μm. (d) Neuronal induction efficiency two days after the treatment with 6C cocktail normalized to control human fibroblast culture on day zero. (e) mRNA levels of key genes related to neuronal reprogramming as assessed by RT–qPCR on day two. (f) Neuronal purity on day six as percentage of MAP2+ cells. (g) TUJ1 and MAP2 immunostaining on day six after treatment with 6C and FCY. Scale bar, 100 μm. (h) NeuN and MAP2 immunostaining on day six after treatment with 6C and FCY. Scale bar, 100 μm. The merge image shows the overlap of neuronal markers with the nucleus stained by DAPI. Statistical differences were examined by student’s t-test, **p<0.001, and ***p<0.0001.

  • Fig. 2 Role of individual epigenetic modifiers in neuronal induction. (a) Representative bright-field image of induced human fibroblast cells to investigate the role of epigenetic regulators by individually removing them from 6C. Scale bar, 100 μm. (b) DCX immunostaining of the human fibroblast cells treated with complete 6C cocktails and when epigenetic modifiers are removed from 6C cocktail, Scale bar, 100 μm. The figure shows the overlap of DCX and DAPI. (c) Neuronal induction efficiency determined on day two post neuronal induction normalized to control human foreskin culture day. Statistical differences were examined by one way ANOVA with Dennett’s post hoc test, **p<0.002, and ***p<0.001.

  • Fig. 3 Extended BET inhibition for generating a homogenous population. (a) Schematic design of two-step protocol 2 for converting human fibroblast into neurons. (b) Bright-field images showing the morphological changes over six days of neuronal reprogramming. (c) TUJ1 and DCX immunostaining after two days of exposure to 6C. Scale bar, 100 μm. (d) Neuronal induction efficiency two days after the treatment with 6C cocktail normalized to control human culture on day zero. (e) Neuronal purity on day six as percentage of MAP2+ cells. (f) TUJ1 and MAP2 immunostaining on day six after treatment with 6C and JYC. Scale bar, 100 μm. (g) MAP2 and NeuN immunostaining on day six after treatment with 6C and JYC. Scale bar, 100 μm. The merge image shows the overlap of neuronal markers with the nucleus stained by DAPI. Statistical differences were examined by student’s t-test, ***p<0.0001.

  • Fig. 4 Maturation cocktail for the generation of mature neuron-like cells. (a) Schematic design of protocol 3 for the generation of mature and functional neurons. (b) Bright-field images showing the morphological changes over 10 days of the generation of MAP2+/NeuN+/vGlUT1+ neuron-like cells. Dual immunostaining of neuron-like cells at day 10 with following markers; (c) NeuN and MAP2, (d) TUJ1 and Syn1, and (e) vGLUT1 and MAP2. Scale bar, 100 μM. The merge image shows the overlap of neuronal markers with the nucleus stained by DAPI. The boxes in lower most right panels show the magnified image of the indicated regions. (f) Fluorescent images of cells loaded with Rhod 2-AM after different time intervals for 50 sec. The arrow indicates the representative region (ROI 1) in which fluorescence intensity was measured. (g) A plot of ΔF/(F0) showing the change in fluorescent intensity over time with respect to the initial fluorescence for different ROIs as the one demonstrated in panel f. ROI 1∼6 were picked on the basis of change in the fluorescence intensity over time and the neuronal morphology as stained by the dye. Selected pseudo-color frames are baseline subtracted images (ΔF) of the cell.


Reference

References

1. Kim Y, Jeong J, Choi D. 2020; Small-molecule-mediated repro-gramming: a silver lining for regenerative medicine. Exp Mol Med. 52:213–226. DOI: 10.1038/s12276-020-0383-3. PMID: 32080339. PMCID: PMC7062739. PMID: 4b1f5c95fe4e407f8dedd427ed2b35c7.
Article
2. De D, Halder D, Shin I, Kim KK. 2017; Small molecule-induced cellular conversion. Chem Soc Rev. 46:6241–6254. DOI: 10.1039/C7CS00330G. PMID: 28829063.
Article
3. Aron Badin R, Bugi A, Williams S, Vadori M, Michael M, Jan C, Nassi A, Lecourtois S, Blancher A, Cozzi E, Hantraye P, Perrier AL. 2019; MHC matching fails to prevent long-term rejection of iPSC-derived neurons in non-human primates. Nat Commun. 10:4357. DOI: 10.1038/s41467-019-12324-0. PMID: 31554807. PMCID: PMC6761126. PMID: c38f707228a749deb5410c466af92cb5.
Article
4. Medvedev SP, Shevchenko AI, Zakian SM. 2010; Induced pluripotent stem cells: problems and advantages when applying them in regenerative medicine. Acta Naturae. 2:18–28. DOI: 10.32607/20758251-2010-2-2-18-27. PMID: 22649638. PMCID: PMC3347549.
Article
5. Xie X, Fu Y, Liu J. 2017; Chemical reprogramming and trans-differentiation. Curr Opin Genet Dev. 46:104–113. DOI: 10.1016/j.gde.2017.07.003. PMID: 28755566.
Article
6. Zhang L, Yin JC, Yeh H, Ma NX, Lee G, Chen XA, Wang Y, Lin L, Chen L, Jin P, Wu GY, Chen G. 2015; Small molecules efficiently reprogram human astroglial cells into functional neurons. Cell Stem Cell. 17:735–747. DOI: 10.1016/j.stem.2015.09.012. PMID: 26481520. PMCID: PMC4675726.
Article
7. Yang Y, Chen R, Wu X, Zhao Y, Fan Y, Xiao Z, Han J, Sun L, Wang X, Dai J. 2019; Rapid and efficient conversion of human fibroblasts into functional neurons by small mole-cules. Stem Cell Reports. 13:862–876. DOI: 10.1016/j.stemcr.2019.09.007. PMID: 31631018. PMCID: PMC6893066.
Article
8. Sturm G, Cardenas A, Bind MA, Horvath S, Wang S, Wang Y, Hägg S, Hirano M, Picard M. 2019; Human aging DNA methylation signatures are conserved but accelerated in cultured fibroblasts. Epigenetics. 14:961–976. DOI: 10.1080/15592294.2019.1626651. PMID: 31156022. PMCID: PMC6691995.
9. Zwaka TP. 2010; Stem cells: troublesome memories. Nature. 467:280–281. DOI: 10.1038/467280a. PMID: 20844526.
10. Biddy BA, Kong W, Kamimoto K, Guo C, Waye SE, Sun T, Morris SA. 2018; Single-cell mapping of lineage and identity in direct reprogramming. Nature. 564:219–224. DOI: 10.1038/s41586-018-0744-4. PMID: 30518857. PMCID: PMC6635140.
Article
11. Papp B, Plath K. 2013; Epigenetics of reprogramming to induced pluripotency. Cell. 152:1324–1343. DOI: 10.1016/j.cell.2013.02.043. PMID: 23498940. PMCID: PMC3602907.
Article
12. Jaenisch R, Bird A. 2003; Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 33 Suppl:245–254. DOI: 10.1038/ng1089. PMID: 12610534.
Article
13. He S, Dong G, Li Y, Wu S, Wang W, Sheng C. 2020; Potent dual BET/HDAC inhibitors for efficient treatment of pancreatic cancer. Angew Chem Int Ed Engl. 59:3028–3032. DOI: 10.1002/anie.201915896. PMID: 31943585.
Article
14. Ren Q, Gao W. 2021; Current status in the discovery of dual BET/HDAC inhibitors. Bioorg Med Chem Lett. 38:127829. DOI: 10.1016/j.bmcl.2021.127829. PMID: 33685790.
Article
15. Gao L, Guan W, Wang M, Wang H, Yu J, Liu Q, Qiu B, Yu Y, Ping Y, Bian X, Shen L, Pei G. 2017; Direct generation of human neuronal cells from adult astrocytes by small mole-cules. Stem Cell Reports. 8:538–547. DOI: 10.1016/j.stemcr.2017.01.014. PMID: 28216149. PMCID: PMC5355633. PMID: 33929677d0d249d7a0a939129f32301e.
Article
16. Richner M, Victor MB, Liu Y, Abernathy D, Yoo AS. 2015; MicroRNA-based conversion of human fibroblasts into striatal medium spiny neurons. Nat Protoc. 10:1543–1555. DOI: 10.1038/nprot.2015.102. PMID: 26379228.
Article
17. Yang J, Cao H, Guo S, Zhu H, Tao H, Zhang L, Chen Z, Sun T, Chi S, Hu Q. 2020; Small molecular compounds efficiently convert human fibroblasts directly into neurons. Mol Med Rep. 22:4763–4771. DOI: 10.3892/mmr.2020.11559. PMID: 33174059. PMCID: PMC7646904.
Article
18. Hu W, Qiu B, Guan W, Wang Q, Wang M, Li W, Gao L, Shen L, Huang Y, Xie G, Zhao H, Jin Y, Tang B, Yu Y, Zhao J, Pei G. 2015; Direct conversion of normal and Alzheimer's disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell. 17:204–212. DOI: 10.1016/j.stem.2015.07.006. PMID: 26253202.
Article
19. Li X, Zuo X, Jing J, Ma Y, Wang J, Liu D, Zhu J, Du X, Xiong L, Du Y, Xu J, Xiao X, Wang J, Chai Z, Zhao Y, Deng H. 2015; Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell. 17:195–203. DOI: 10.1016/j.stem.2015.06.003. PMID: 26253201.
Article
20. Qin H, Zhao AD, Sun ML, Ma K, Fu XB. 2020; Direct conversion of human fibroblasts into dopaminergic neuron-like cells using small molecules and protein factors. Mil Med Res. 7:52. DOI: 10.1186/s40779-020-00284-2. PMID: 33129359. PMCID: PMC7603706. PMID: fc2d4c953cb14ef997486c523d38fdb1.
Article
21. Wan XY, Xu LY, Li B, Sun QH, Ji QL, Huang DD, Zhao L, Xiao YT. 2018; Chemical conversion of human lung fibroblasts into neuronal cells. Int J Mol Med. 41:1463–1468. DOI: 10.3892/ijmm.2018.3375. PMID: 29328434. PMCID: PMC5819915.
Article
22. Shaulian E, Resnitzky D, Shifman O, Blandino G, Amste-rdam A, Yayon A, Oren M. 1997; Induction of Mdm2 and enhancement of cell survival by bFGF. Oncogene. 15:2717–2725. DOI: 10.1038/sj.onc.1201453. PMID: 9400998.
Article
23. Ichida JK, Blanchard J, Lam K, Son EY, Chung JE, Egli D, Loh KM, Carter AC, Di Giorgio FP, Koszka K, Huangfu D, Akutsu H, Liu DR, Rubin LL, Eggan K. 2009; A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell. 5:491–503. DOI: 10.1016/j.stem.2009.09.012. PMID: 19818703. PMCID: PMC3335195.
Article
24. He S, Guo Y, Zhang Y, Li Y, Feng C, Li X, Lin L, Guo L, Wang H, Liu C, Zheng Y, Luo C, Liu Q, Wang F, Sun H, Liang L, Li L, Su H, Chen J, Pei D, Zheng H. 2015; Repro-gramming somatic cells to cells with neuronal characteristics by defined medium both in vitro and in vivo. Cell Regen. 4:12. DOI: 10.1186/s13619-015-0027-6. PMID: 26719791. PMCID: PMC4696146. PMID: 7d626c304f2948549922a9456079a9f0.
Article
25. Boersma MC, Dresselhaus EC, De Biase LM, Mihalas AB, Bergles DE, Meffert MK. 2011; A requirement for nuclear factor-kappaB in developmental and plasticity-associated synapto-genesis. J Neurosci. 31:5414–5425. DOI: 10.1523/JNEUROSCI.2456-10.2011. PMID: 21471377. PMCID: PMC3113725.
Article
26. Hajmirza A, Emadali A, Gauthier A, Casasnovas O, Gressin R, Callanan MB. 2018; BET family protein BRD4: an emerging actor in NFκB signaling in inflammation and cancer. Bio-medicines. 6:16. DOI: 10.3390/biomedicines6010016. PMID: 29415456. PMCID: PMC5874673. PMID: 79ff9412be664cf0bfb0c724c493cd8f.
Article
27. Masserdotti G, Gascón S, Götz M. 2016; Direct neuronal reprogramming: learning from and for development. Deve-lopment. 143:2494–2510. DOI: 10.1242/dev.092163. PMID: 27436039.
Article
28. Irwin RP, Allen CN. 2013; Simultaneous electrophysiological recording and calcium imaging of suprachiasmatic nucleus neurons. J Vis Exp. (82):50794. DOI: 10.3791/50794-v. PMID: 24335611. PMCID: PMC4047661.
Article
29. Fernandes GS, Singh RD, Kim KK. 2022; Generation of a pure culture of neuron-like cells with a glutamatergic phenotype from mouse astrocytes. Biomedicines. 10:928. DOI: 10.3390/biomedicines10040928. PMID: 35453678. PMCID: PMC9031297. PMID: ed0e713caab14264b227889975b0b71e.
Article
30. Prè D, Nestor MW, Sproul AA, Jacob S, Koppensteiner P, Chinchalongporn V, Zimmer M, Yamamoto A, Noggle SA, Arancio O. 2014; A time course analysis of the electrophysio-logical properties of neurons differentiated from human induced pluripotent stem cells (iPSCs). PLoS One. 9:e103418. DOI: 10.1371/journal.pone.0103418. PMID: 25072157. PMCID: PMC4114788. PMID: d3d130733b214fe3901affa4072ddd19.
Article
31. Filippakopoulos P, Knapp S. 2014; Targeting bromodomains: epigenetic readers of lysine acetylation. Nat Rev Drug Discov. 13:337–356. DOI: 10.1038/nrd4286. PMID: 24751816.
Article
32. Falkenberg KJ, Johnstone RW. 2014; Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov. 13:673–691. DOI: 10.1038/nrd4360. PMID: 25131830.
Article
33. Mazur PK, Herner A, Mello SS, Wirth M, Hausmann S, Sánchez-Rivera FJ, Lofgren SM, Kuschma T, Hahn SA, Vangala D, Trajkovic-Arsic M, Gupta A, Heid I, Noël PB, Braren R, Erkan M, Kleeff J, Sipos B, Sayles LC, Heikenwalder M, Heßmann E, Ellenrieder V, Esposito I, Jacks T, Bradner JE, Khatri P, Sweet-Cordero EA, Attardi LD, Schmid RM, Schneider G, Sage J, Siveke JT. 2015; Com-bined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat Med. 21:1163–1171. DOI: 10.1038/nm.3952. PMID: 26390243. PMCID: PMC4959788.
Article
34. Korb E, Herre M, Zucker-Scharff I, Darnell RB, Allis CD. 2015; BET protein Brd4 activates transcription in neurons and BET inhibitor Jq1 blocks memory in mice. Nat Neurosci. 18:1464–1473. DOI: 10.1038/nn.4095. PMID: 26301327. PMCID: PMC4752120.
Article
35. Dresselhaus EC, Meffert MK. 2019; Cellular specificity of NF-κB function in the nervous system. Front Immunol. 10:1043. DOI: 10.3389/fimmu.2019.01043. PMID: 31143184. PMCID: PMC6520659. PMID: ec0ba566ca164eefad4d26144e11cdb2.
Article
36. Rosenberg SS, Spitzer NC. 2011; Calcium signaling in neuronal development. Cold Spring Harb Perspect Biol. 3:a004259. DOI: 10.1101/cshperspect.a004259. PMID: 21730044. PMCID: PMC3179332.
Article
37. Macleod GT. 2012; Imaging and analysis of nonratiometric calcium indicators at the Drosophila larval neuromuscular junction. Cold Spring Harb Protoc. 2012:802–809. DOI: 10.1101/pdb.prot070110. PMID: 22753596.
38. Berridge MJ. 1998; Neuronal calcium signaling. Neuron. 21:13–26. DOI: 10.1016/S0896-6273(00)80510-3. PMID: 9697848.
Article
39. Greer PL, Greenberg ME. 2008; From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function. Neuron. 59:846–860. DOI: 10.1016/j.neuron.2008.09.002. PMID: 18817726.
Article
40. Fischer I, Dulin JN, Lane MA. 2020; Transplanting neural progenitor cells to restore connectivity after spinal cord injury. Nat Rev Neurosci. 21:366–383. DOI: 10.1038/s41583-020-0314-2. PMID: 32518349. PMCID: PMC8384139.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr