Int J Stem Cells.  2022 Feb;15(1):41-59. 10.15283/ijsc22004.

Engineering Brain Organoids: Toward Mature Neural Circuitry with an Intact Cytoarchitecture

Affiliations
  • 1Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
  • 2KAIST-Wonjin Cell Therapy Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea

Abstract

The emergence of brain organoids as a model system has been a tremendously exciting development in the field of neuroscience. Brain organoids are a gateway to exploring the intricacies of human-specific neurogenesis that have so far eluded the neuroscience community. Regardless, current culture methods have a long way to go in terms of accuracy and reproducibility. To perfectly mimic the human brain, we need to recapitulate the complex in vivo context of the human fetal brain and achieve mature neural circuitry with an intact cytoarchitecture. In this review, we explore the major challenges facing the current brain organoid systems, potential technical breakthroughs to advance brain organoid techniques up to levels similar to an in vivo human developing brain, and the future prospects of this technology.

Keyword

Brain organoid; Pluripotent stem cell; Bioengineering; Multi-regional identity; 3-dimensional culture

Figure

  • Fig. 1 Signaling dynamics in the embryonic brain development. The schematic illustration of signaling factors in mouse embryonic brain development. The combinatory effects of morphogens determine the regionalization of the brain. Tel: telencephalon, Di: diencephalon, Mes: mesencephalon, Rhom: rhombencephalon, MHB: midbrain-hindbrain boundary, ChP: choroid plexus, FP: floor plate, MGE: medial ganglionic eminence, LGE: lateral ganglionic eminence, SHH: sonic hedgehog, FGF: fibroblast growth factor, BMP: bone morphogenic protein.

  • Fig. 2 Generation of brain organoids. The process of brain organoid generation consists first of aggregation of hPSCs into EBs and then further differentiation to organoids. EBs can undergo guided differentiation with small molecules into region-specific organoids or unguided differentiation to generate cerebral organoids. Though cerebral brain organoids successfully replicate many aspects of the human fetal brain, they are still limited with regard to many factors such as the depth and complexity of the cortical lamination.

  • Fig. 3 Engineering advances to overcome major hurdles of brain organoid technology. (A) Efforts to overcome the “batch effect” include using standardized microwells to generate homogenous EBs and generating organoids with single neural rosettes. (B) The tradeoff between the multi-regional complexity but low reproducibility of unguided cerebral organoids with high fidelity but low complexity of region-specific organoids may be overcome by generating mutli-regional organoids. Multi-regional organoids can be generated through assembloid production, morphogen gradients created by artificial signaling centers, and chemical and/or light inducible systems. (C) Mimicking the neural ECM in brain organoid culture systems is a challenge that has been addressed by modulating the properties of both naturally-derived and synthetic biomaterials. (D) Various approaches may be used to overcome the “diffusion limit” to enhance the long-term culture and mature of brain organoids. These include the use of bioreactors, organoid slice culture at the air-liquid interface, and vascularization through in vivo transplantation. (E) Organoids lack many important connections among various cellular subtypes within the human brain. These missing cell types may be accounted for through microglia integration (neuro-immune), CFS producing ChP organoid generation (meninges-brain), and neuromuscular organoid generation (PNS-CNS).

  • Fig. 4 Advanced tools to analyze the functional properties of the brain organoid system. (A∼C) Lineage tracing tools to elucidate spatiotemporal dynamics of developing organoids, including dynamic lineage tracers and cell tracking. (D, E) Electrophysiological methods to monitor electrical activity in brain organoids, including voltage imaging and bioelectronic interfaces.


Cited by  2 articles

Lo and Behold, the Lab-Grown Organs Have Arrived!
Jaesang Kim
Int J Stem Cells. 2022;15(1):1-2.    doi: 10.15283/ijsc22026.

Transcriptional Signature of Valproic Acid-Induced Neural Tube Defects in Human Spinal Cord Organoids
Ju-Hyun Lee, Mohammed R. Shaker, Si-Hyung Park, Woong Sun
Int J Stem Cells. 2023;16(4):385-393.    doi: 10.15283/ijsc23012.


Reference

References

1. Lui JH, Hansen DV, Kriegstein AR. 2011; Development and evolution of the human neocortex. Cell. 146:18–36. Erratum in: Cell 2011;146:332. DOI: 10.1016/j.cell.2011.06.030. PMCID: PMC3610574. PMID: 21729779.
Article
2. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. 1998; Embryonic stem cell lines derived from human blastocysts. Science. 282:1145–1147. Erratum in: Science 1998;282:1827. DOI: 10.1126/science.282.5391.1145. PMID: 9804556.
Article
3. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. 2007; Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131:861–872. DOI: 10.1016/j.cell.2007.11.019. PMID: 18035408.
Article
4. Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, Matsumura M, Wataya T, Nishiyama A, Muguruma K, Sasai Y. 2008; Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell. 3:519–532. DOI: 10.1016/j.stem.2008.09.002. PMID: 18983967.
Article
5. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA. 2013; Cerebral organoids model human brain development and microcephaly. Nature. 501:373–379. DOI: 10.1038/nature12517. PMID: 23995685. PMCID: PMC3817409.
Article
6. Lancaster MA, Knoblich JA. 2014; Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc. 9:2329–2340. DOI: 10.1038/nprot.2014.158. PMID: 25188634. PMCID: PMC4160653.
Article
7. Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, Yao B, Hamersky GR, Jacob F, Zhong C, Yoon KJ, Jeang W, Lin L, Li Y, Thakor J, Berg DA, Zhang C, Kang E, Chickering M, Nauen D, Ho CY, Wen Z, Christian KM, Shi PY, Maher BJ, Wu H, Jin P, Tang H, Song H, Ming GL. 2016; Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell. 165:1238–1254. DOI: 10.1016/j.cell.2016.04.032. PMID: 27118425. PMCID: PMC4900885.
Article
8. Sakaguchi H, Kadoshima T, Soen M, Narii N, Ishida Y, Ohgushi M, Takahashi J, Eiraku M, Sasai Y. 2015; Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nat Commun. 6:8896. DOI: 10.1038/ncomms9896. PMID: 26573335. PMCID: PMC4660208.
Article
9. Muguruma K, Nishiyama A, Kawakami H, Hashimoto K, Sasai Y. 2015; Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep. 10:537–550. DOI: 10.1016/j.celrep.2014.12.051. PMID: 25640179.
Article
10. Di Lullo E, Kriegstein AR. 2017; The use of brain organoids to investigate neural development and disease. Nat Rev Neurosci. 18:573–584. DOI: 10.1038/nrn.2017.107. PMID: 28878372. PMCID: PMC5667942.
Article
11. Gordon A, Yoon SJ, Tran SS, Makinson CD, Park JY, Andersen J, Valencia AM, Horvath S, Xiao X, Huguenard JR, Pașca SP, Geschwind DH. 2021; Long-term maturation of human cortical organoids matches key early postnatal transitions. Nat Neurosci. 24:331–342. DOI: 10.1038/s41593-021-00802-y. PMID: 33619405. PMCID: PMC8109149.
Article
12. Bhaduri A, Andrews MG, Mancia Leon W, Jung D, Shin D, Allen D, Jung D, Schmunk G, Haeussler M, Salma J, Pollen AA, Nowakowski TJ, Kriegstein AR. 2020; Cell stress in cortical organoids impairs molecular subtype specification. Nature. 578:142–148. DOI: 10.1038/s41586-020-1962-0. PMID: 31996853. PMCID: PMC7433012.
Article
13. Quadrato G, Nguyen T, Macosko EZ, Sherwood JL, Min Yang S, Berger DR, Maria N, Scholvin J, Goldman M, Kinney JP, Boyden ES, Lichtman JW, Williams ZM, McCarroll SA, Arlotta P. 2017; Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 545:48–53. DOI: 10.1038/nature22047. PMID: 28445462. PMCID: PMC5659341.
Article
14. Tanaka Y, Cakir B, Xiang Y, Sullivan GJ, Park IH. 2020; Synthetic analyses of single-cell transcriptomes from multiple brain organoids and fetal brain. Cell Rep. 30:1682–1689.e3. DOI: 10.1016/j.celrep.2020.01.038. PMID: 32049002. PMCID: PMC7043376.
Article
15. Lancaster MA, Corsini NS, Wolfinger S, Gustafson EH, Phillips AW, Burkard TR, Otani T, Livesey FJ, Knoblich JA. 2017; Guided self-organization and cortical plate formation in human brain organoids. Nat Biotechnol. 35:659–666. DOI: 10.1038/nbt.3906. PMID: 28562594. PMCID: PMC5824977.
Article
16. Dong X, Xu SB, Chen X, Tao M, Tang XY, Fang KH, Xu M, Pan Y, Chen Y, He S, Liu Y. 2021; Human cerebral organoids establish subcortical projections in the mouse brain after transplantation. Mol Psychiatry. 26:2964–2976. DOI: 10.1038/s41380-020-00910-4. PMID: 33051604. PMCID: PMC8505255.
Article
17. Choi YY, Chung BG, Lee DH, Khademhosseini A, Kim JH, Lee SH. 2010; Controlled-size embryoid body formation in concave microwell arrays. Biomaterials. 31:4296–4303. DOI: 10.1016/j.biomaterials.2010.01.115. PMID: 20206991.
Article
18. Hwang YS, Chung BG, Ortmann D, Hattori N, Moeller HC, Khademhosseini A. 2009; Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proc Natl Acad Sci U S A. 106:16978–16983. DOI: 10.1073/pnas.0905550106. PMID: 19805103. PMCID: PMC2761314.
Article
19. Vrij EJ, Espinoza S, Heilig M, Kolew A, Schneider M, van Blitterswijk CA, Truckenmüller RK, Rivron NC. 2016; 3D high throughput screening and profiling of embryoid bodies in thermoformed microwell plates. Lab Chip. 16:734–742. DOI: 10.1039/C5LC01499A. PMID: 26775648.
Article
20. Nelson CM, Vanduijn MM, Inman JL, Fletcher DA, Bissell MJ. 2006; Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science. 314:298–300. DOI: 10.1126/science.1131000. PMID: 17038622. PMCID: PMC2933179.
Article
21. Cerchiari A, Garbe JC, Todhunter ME, Jee NY, Pinney JR, LaBarge MA, Desai TA, Gartner ZJ. 2015; Formation of spatially and geometrically controlled three-dimensional tissues in soft gels by sacrificial micromolding. Tissue Eng Part C Methods. 21:541–547. DOI: 10.1089/ten.tec.2014.0450. PMID: 25351430. PMCID: PMC4442595.
Article
22. O'Leary DD, Chou SJ, Sahara S. 2007; Area patterning of the mammalian cortex. Neuron. 56:252–269. DOI: 10.1016/j.neuron.2007.10.010. PMID: 17964244.
23. Paşca AM, Sloan SA, Clarke LE, Tian Y, Makinson CD, Huber N, Kim CH, Park JY, O'Rourke NA, Nguyen KD, Smith SJ, Huguenard JR, Geschwind DH, Barres BA, Paşca SP. 2015; Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods. 12:671–678. DOI: 10.1038/nmeth.3415. PMID: 26005811. PMCID: PMC4489980.
Article
24. Birey F, Andersen J, Makinson CD, Islam S, Wei W, Huber N, Fan HC, Metzler KRC, Panagiotakos G, Thom N, O'Rourke NA, Steinmetz LM, Bernstein JA, Hallmayer J, Huguenard JR, Paşca SP. 2017; Assembly of functionally integrated human forebrain spheroids. Nature. 545:54–59. DOI: 10.1038/nature22330. PMID: 28445465. PMCID: PMC5805137.
Article
25. Xiang Y, Tanaka Y, Patterson B, Kang YJ, Govindaiah G, Roselaar N, Cakir B, Kim KY, Lombroso AP, Hwang SM, Zhong M, Stanley EG, Elefanty AG, Naegele JR, Lee SH, Weissman SM, Park IH. 2017; Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell. 21:383–398.e7. DOI: 10.1016/j.stem.2017.07.007. PMID: 28757360. PMCID: PMC5720381.
Article
26. Jo J, Xiao Y, Sun AX, Cukuroglu E, Tran HD, Göke J, Tan ZY, Saw TY, Tan CP, Lokman H, Lee Y, Kim D, Ko HS, Kim SO, Park JH, Cho NJ, Hyde TM, Kleinman JE, Shin JH, Weinberger DR, Tan EK, Je HS, Ng HH. 2016; Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell. 19:248–257. DOI: 10.1016/j.stem.2016.07.005. PMID: 27476966. PMCID: PMC5510242.
Article
27. Miura Y, Li MY, Birey F, Ikeda K, Revah O, Thete MV, Park JY, Puno A, Lee SH, Porteus MH, Pașca SP. 2020; Generation of human striatal organoids and cortico-striatal assembloids from human pluripotent stem cells. Nat Biotechnol. 38:1421–1430. DOI: 10.1038/s41587-020-00763-w. PMID: 33273741.
Article
28. Pellegrini L, Bonfio C, Chadwick J, Begum F, Skehel M, Lancaster MA. 2020; Human CNS barrier-forming organoids with cerebrospinal fluid production. Science. 369:eaaz5626. DOI: 10.1126/science.aaz5626. PMID: 32527923. PMCID: PMC7116154.
Article
29. Xiang Y, Tanaka Y, Cakir B, Patterson B, Kim KY, Sun P, Kang YJ, Zhong M, Liu X, Patra P, Lee SH, Weissman SM, Park IH. 2019; hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids. Cell Stem Cell. 24:487–497.e7. DOI: 10.1016/j.stem.2018.12.015. PMID: 30799279. PMCID: PMC6853597.
Article
30. Valiulahi P, Vidyawan V, Puspita L, Oh Y, Juwono VB, Sittipo P, Friedlander G, Yahalomi D, Sohn JW, Lee YK, Yoon JK, Shim JW. 2021; Generation of caudal-type serotonin neurons and hindbrain-fate organoids from hPSCs. Stem Cell Reports. 16:1938–1952. DOI: 10.1016/j.stemcr.2021.06.006. PMID: 34242615. PMCID: PMC8365029.
Article
31. Ogura T, Sakaguchi H, Miyamoto S, Takahashi J. 2018; Three-dimensional induction of dorsal, intermediate and ventral spinal cord tissues from human pluripotent stem cells. Development. 145:dev162214. DOI: 10.1242/dev.162214. PMID: 30061169. PMCID: PMC6124545.
Article
32. Yoon SJ, Elahi LS, Pașca AM, Marton RM, Gordon A, Revah O, Miura Y, Walczak EM, Holdgate GM, Fan HC, Huguenard JR, Geschwind DH, Pașca SP. 2019; Reliability of human cortical organoid generation. Nat Methods. 16:75–78. DOI: 10.1038/s41592-018-0255-0. PMID: 30573846. PMCID: PMC6677388.
Article
33. Velasco S, Kedaigle AJ, Simmons SK, Nash A, Rocha M, Quadrato G, Paulsen B, Nguyen L, Adiconis X, Regev A, Levin JZ, Arlotta P. 2019; Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature. 570:523–527. DOI: 10.1038/s41586-019-1289-x. PMID: 31168097. PMCID: PMC6906116.
Article
34. Libby ARG, Joy DA, Elder NH, Bulger EA, Krakora MZ, Gaylord EA, Mendoza-Camacho F, Butts JC, McDevitt TC. 2021; Axial elongation of caudalized human organoids mimics aspects of neural tube development. Development. 148:dev198275. DOI: 10.1242/dev.198275. PMID: 34142711. PMCID: PMC8254868.
Article
35. Gabriel E, Albanna W, Pasquini G, Ramani A, Josipovic N, Mariappan A, Schinzel F, Karch CM, Bao G, Gottardo M, Suren AA, Hescheler J, Nagel-Wolfrum K, Persico V, Rizzoli SO, Altmüller J, Riparbelli MG, Callaini G, Goureau O, Papantonis A, Busskamp V, Schneider T, Gopalakrishnan J. 2021; Human brain organoids assemble functionally integrated bilateral optic vesicles. Cell Stem Cell. 28:1740–1757.e8. DOI: 10.1016/j.stem.2021.07.010. PMID: 34407456.
Article
36. Bagley JA, Reumann D, Bian S, Lévi-Strauss J, Knoblich JA. 2017; Fused cerebral organoids model interactions between brain regions. Nat Methods. 14:743–751. DOI: 10.1038/nmeth.4304. PMID: 28504681. PMCID: PMC5540177.
Article
37. Kasai T, Suga H, Sakakibara M, Ozone C, Matsumoto R, Kano M, Mitsumoto K, Ogawa K, Kodani Y, Nagasaki H, Inoshita N, Sugiyama M, Onoue T, Tsunekawa T, Ito Y, Takagi H, Hagiwara D, Iwama S, Goto M, Banno R, Takahashi J, Arima H. 2020; Hypothalamic contribution to pituitary functions is recapitulated in vitro using 3D-cultured human iPS cells. Cell Rep. 30:18–24.e5. DOI: 10.1016/j.celrep.2019.12.009. PMID: 31914385.
38. Andersen J, Revah O, Miura Y, Thom N, Amin ND, Kelley KW, Singh M, Chen X, Thete MV, Walczak EM, Vogel H, Fan HC, Paşca SP. 2020; Generation of functional human 3D cortico-motor assembloids. Cell. 183:1913–1929.e26. DOI: 10.1016/j.cell.2020.11.017. PMID: 33333020. PMCID: PMC8711252.
Article
39. Sansom SN, Livesey FJ. 2009; Gradients in the brain: the control of the development of form and function in the cerebral cortex. Cold Spring Harb Perspect Biol. 1:a002519. DOI: 10.1101/cshperspect.a002519. PMID: 20066088. PMCID: PMC2742095.
Article
40. Gurdon JB, Mitchell A, Mahony D. 1995; Direct and continuous assessment by cells of their position in a morphogen gradient. Nature. 376:520–521. DOI: 10.1038/376520a0. PMID: 7637784.
Article
41. Ben-Reuven L, Reiner O. 2020; Toward spatial identities in human brain organoids-on-chip induced by morphogen-soaked beads. Bioengineering (Basel). 7:164. DOI: 10.3390/bioengineering7040164. PMID: 33352983. PMCID: PMC7766968. PMID: ff5862d4622e47668183887d00b1cf5f.
Article
42. Xu PF, Borges RM, Fillatre J, de Oliveira-Melo M, Cheng T, Thisse B, Thisse C. 2021; Construction of a mammalian embryo model from stem cells organized by a morphogen signalling centre. Nat Commun. 12:3277. DOI: 10.1038/s41467-021-23653-4. PMID: 34078907. PMCID: PMC8172561. PMID: 0246bf48802949329082b7c4d63be793.
Article
43. Glykofrydis F, Cachat E, Berzanskyte I, Dzierzak E, Davies JA. 2021; Bioengineering self-organizing signaling centers to control embryoid body pattern elaboration. ACS Synth Biol. 10:1465–1480. DOI: 10.1021/acssynbio.1c00060. PMID: 34019395.
Article
44. Cederquist GY, Asciolla JJ, Tchieu J, Walsh RM, Cornacchia D, Resh MD, Studer L. 2019; Specification of positional identity in forebrain organoids. Nat Biotechnol. 37:436–444. DOI: 10.1038/s41587-019-0085-3. PMID: 30936566. PMCID: PMC6447454.
Article
45. Repina NA, Bao X, Zimmermann JA, Joy DA, Kane RS, Schaffer DV. 2019. Optogenetic control of Wnt signaling for modeling early embryogenic patterning with human pluripotent stem cells. bioRxiv 665695 [Preprint]. Available from: https://doi.org/10.1101/665695. cited 2019 Jun 10. DOI: 10.1101/665695. PMCID: PMC6706021.
Article
46. Martínez-Ara G, Taberner N, Takayama M, Sandaltzopoulou E, Villava CE, Takata N, Eiraku M, Ebisuya M. 2021. Optogenetic control of apical constriction induces synthetic morphogenesis in mammalian tissues. bioRxiv 440475 [Preprint]. Available from: https://doi.org/10.1101/2021.04.20.440475. cited 2021 Apr 21. DOI: 10.1101/2021.04.20.440475. PMID: 34494114. PMCID: PMC8451065.
Article
47. Legnini I, Emmenegger L, Wurmus R, Zappulo A, Martinez AO, Jara CC, Boltengagen A, Hessler T, Mastrobuoni G, Rybak-Wolf A, Kempa S, Zinzen R, Woehler A, Rajewsky N. 2021. Optogenetic perturbations of RNA expression in tissue space. bioRxiv 461850 [Preprint]. Available from: https://doi.org/10.1101/2021.09.26.461850. cited 2022 Feb 9. DOI: 10.1101/2021.09.26.461850. PMID: 33585804. PMCID: PMC7866843.
Article
48. Nihongaki Y, Furuhata Y, Otabe T, Hasegawa S, Yoshimoto K, Sato M. 2017; CRISPR-Cas9-based photoactivatable transcription systems to induce neuronal differentiation. Nat Methods. 14:963–966. DOI: 10.1038/nmeth.4430. PMID: 28892089.
Article
49. Rifes P, Isaksson M, Rathore GS, Aldrin-Kirk P, Møller OK, Barzaghi G, Lee J, Egerod KL, Rausch DM, Parmar M, Pers TH, Laurell T, Kirkeby A. 2020; Modeling neural tube development by differentiation of human embryonic stem cells in a microfluidic WNT gradient. Nat Biotechnol. 38:1265–1273. Erratum in: Nat Biotechnol 2020;38:1357. DOI: 10.1038/s41587-020-0525-0. PMID: 32451506.
Article
50. Brown TE, Anseth KS. 2017; Spatiotemporal hydrogel biomaterials for regenerative medicine. Chem Soc Rev. 46:6532–6552. DOI: 10.1039/C7CS00445A. PMID: 28820527. PMCID: PMC5662487.
Article
51. Zimmermann DR, Dours-Zimmermann MT. 2008; Extracellular matrix of the central nervous system: from neglect to challenge. Histochem Cell Biol. 130:635–653. DOI: 10.1007/s00418-008-0485-9. PMID: 18696101.
Article
52. Barros CS, Franco SJ, Müller U. 2011; Extracellular matrix: functions in the nervous system. Cold Spring Harb Perspect Biol. 3:a005108. DOI: 10.1101/cshperspect.a005108. PMID: 21123393. PMCID: PMC3003458.
Article
53. Long KR, Huttner WB. 2019; How the extracellular matrix shapes neural development. Open Biol. 9:180216. DOI: 10.1098/rsob.180216. PMID: 30958121. PMCID: PMC6367132. PMID: 1bc187ecda974d4e91226b2f146430b5.
Article
54. Luo C, Lancaster MA, Castanon R, Nery JR, Knoblich JA, Ecker JR. 2016; Cerebral organoids recapitulate epigenomic signatures of the human fetal brain. Cell Rep. 17:3369–3384. DOI: 10.1016/j.celrep.2016.12.001. PMID: 28009303. PMCID: PMC5495578.
Article
55. Bian S, Repic M, Guo Z, Kavirayani A, Burkard T, Bagley JA, Krauditsch C, Knoblich JA. 2018; Genetically engineered cerebral organoids model brain tumor formation. Nat Methods. 15:631–639. Erratum in: Nat Methods 2018; 15:748. DOI: 10.1038/s41592-018-0070-7. PMCID: PMC6071863. PMID: 30038414.
Article
56. Hughes CS, Postovit LM, Lajoie GA. 2010; Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics. 10:1886–1890. DOI: 10.1002/pmic.200900758. PMID: 20162561.
Article
57. Bandtlow CE, Zimmermann DR. 2000; Proteoglycans in the developing brain: new conceptual insights for old proteins. Physiol Rev. 80:1267–1290. DOI: 10.1152/physrev.2000.80.4.1267. PMID: 11015614.
Article
58. Miyata S, Kitagawa H. 2017; Formation and remodeling of the brain extracellular matrix in neural plasticity: roles of chondroitin sulfate and hyaluronan. Biochim Biophys Acta Gen Subj. 1861:2420–2434. DOI: 10.1016/j.bbagen.2017.06.010. PMID: 28625420.
Article
59. Ma W, Tavakoli T, Derby E, Serebryakova Y, Rao MS, Mattson MP. 2008; Cell-extracellular matrix interactions regulate neural differentiation of human embryonic stem cells. BMC Dev Biol. 8:90. DOI: 10.1186/1471-213X-8-90. PMID: 18808690. PMCID: PMC2570688.
Article
60. Kothapalli CR, Kamm RD. 2013; 3D matrix microenvironment for targeted differentiation of embryonic stem cells into neural and glial lineages. Biomaterials. 34:5995–6007. DOI: 10.1016/j.biomaterials.2013.04.042. PMID: 23694902.
Article
61. Sood D, Cairns DM, Dabbi JM, Ramakrishnan C, Deisseroth K, Black LD 3rd, Santaniello S, Kaplan DL. 2019; Functional maturation of human neural stem cells in a 3D bioengineered brain model enriched with fetal brain-derived matrix. Sci Rep. 9:17874. DOI: 10.1038/s41598-019-54248-1. PMID: 31784595. PMCID: PMC6884597.
Article
62. Zhang ZN, Freitas BC, Qian H, Lux J, Acab A, Trujillo CA, Herai RH, Nguyen Huu VA, Wen JH, Joshi-Barr S, Karpiak JV, Engler AJ, Fu XD, Muotri AR, Almutairi A. 2016; Layered hydrogels accelerate iPSC-derived neuronal maturation and reveal migration defects caused by MeCP2 dysfunction. Proc Natl Acad Sci U S A. 113:3185–3190. DOI: 10.1073/pnas.1521255113. PMID: 26944080. PMCID: PMC4812712.
Article
63. Bozza A, Coates EE, Incitti T, Ferlin KM, Messina A, Menna E, Bozzi Y, Fisher JP, Casarosa S. 2014; Neural differentiation of pluripotent cells in 3D alginate-based cultures. Biomaterials. 35:4636–4645. DOI: 10.1016/j.biomaterials.2014.02.039. PMID: 24631250.
Article
64. Lindborg BA, Brekke JH, Vegoe AL, Ulrich CB, Haider KT, Subramaniam S, Venhuizen SL, Eide CR, Orchard PJ, Chen W, Wang Q, Pelaez F, Scott CM, Kokkoli E, Keirstead SA, Dutton JR, Tolar J, O'Brien TD. 2016; Rapid induction of cerebral organoids from human induced pluripotent stem cells using a chemically defined hydrogel and defined cell culture medium. Stem Cells Transl Med. 5:970–979. DOI: 10.5966/sctm.2015-0305. PMID: 27177577. PMCID: PMC4922855.
Article
65. Lam J, Carmichael ST, Lowry WE, Segura T. 2015; Hydrogel design of experiments methodology to optimize hydrogel for iPSC-NPC culture. Adv Healthc Mater. 4:534–539. DOI: 10.1002/adhm.201400410. PMID: 25378176. PMCID: PMC4384641.
Article
66. Ranga A, Gobaa S, Okawa Y, Mosiewicz K, Negro A, Lutolf MP. 2014; 3D niche microarrays for systems-level analyses of cell fate. Nat Commun. 5:4324. DOI: 10.1038/ncomms5324. PMID: 25027775. PMCID: PMC4104440.
Article
67. Ranga A, Girgin M, Meinhardt A, Eberle D, Caiazzo M, Tanaka EM, Lutolf MP. 2016; Neural tube morphogenesis in synthetic 3D microenvironments. Proc Natl Acad Sci U S A. 113:E6831–E6839. Erratum in: Proc Natl Acad Sci U S A 2017;114:E3163. DOI: 10.1073/pnas.1603529113. PMID: 27742791. PMCID: PMC5098636.
Article
68. Qian X, Jacob F, Song MM, Nguyen HN, Song H, Ming GL. 2018; Generation of human brain region-specific organoids using a miniaturized spinning bioreactor. Nat Protoc. 13:565–580. DOI: 10.1038/nprot.2017.152. PMID: 29470464. PMCID: PMC6241211.
Article
69. DiStefano T, Chen HY, Panebianco C, Kaya KD, Brooks MJ, Gieser L, Morgan NY, Pohida T, Swaroop A. 2018; Accelerated and improved differentiation of retinal organoids from pluripotent stem cells in rotating-wall vessel bioreactors. Stem Cell Reports. 10:300–313. Erratum in: Stem Cell Reports 2021;16:224. DOI: 10.1016/j.stemcr.2020.12.006. PMID: 33440179. PMCID: PMC7897579.
Article
70. Zhong X, Gutierrez C, Xue T, Hampton C, Vergara MN, Cao LH, Peters A, Park TS, Zambidis ET, Meyer JS, Gamm DM, Yau KW, Canto-Soler MV. 2014; Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun. 5:4047. DOI: 10.1038/ncomms5047. PMID: 24915161. PMCID: PMC4370190.
Article
71. Brooks MJ, Chen HY, Kelley RA, Mondal AK, Nagashima K, De Val N, Li T, Chaitankar V, Swaroop A. 2019; Improved retinal organoid differentiation by modulating signaling pathways revealed by comparative transcriptome analyses with development in vivo. Stem Cell Reports. 13:891–905. DOI: 10.1016/j.stemcr.2019.09.009. PMID: 31631019. PMCID: PMC6895716.
Article
72. Giandomenico SL, Mierau SB, Gibbons GM, Wenger LMD, Masullo L, Sit T, Sutcliffe M, Boulanger J, Tripodi M, Derivery E, Paulsen O, Lakatos A, Lancaster MA. 2019; Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output. Nat Neurosci. 22:669–679. DOI: 10.1038/s41593-019-0350-2. PMID: 30886407. PMCID: PMC6436729.
Article
73. Szebényi K, Wenger LMD, Sun Y, Dunn AWE, Limegrover CA, Gibbons GM, Conci E, Paulsen O, Mierau SB, Balmus G, Lakatos A. 2021; Human ALS/FTD brain organoid slice cultures display distinct early astrocyte and targetable neuronal pathology. Nat Neurosci. 24:1542–1554. DOI: 10.1038/s41593-021-00923-4. PMID: 34675437. PMCID: PMC8553627.
Article
74. Qian X, Su Y, Adam CD, Deutschmann AU, Pather SR, Goldberg EM, Su K, Li S, Lu L, Jacob F, Nguyen PTT, Huh S, Hoke A, Swinford-Jackson SE, Wen Z, Gu X, Pierce RC, Wu H, Briand LA, Chen HI, Wolf JA, Song H, Ming GL. 2020; Sliced human cortical organoids for modeling distinct cortical layer formation. Cell Stem Cell. 26:766–781.e9. DOI: 10.1016/j.stem.2020.02.002. PMID: 32142682. PMCID: PMC7366517.
Article
75. Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DH, Cohen DM, Toro E, Chen AA, Galie PA, Yu X, Chaturvedi R, Bhatia SN, Chen CS. 2012; Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater. 11:768–774. DOI: 10.1038/nmat3357. PMID: 22751181. PMCID: PMC3586565.
Article
76. Mirabella T, MacArthur JW, Cheng D, Ozaki CK, Woo YJ, Yang M, Chen CS. 2017; 3D-printed vascular networks direct therapeutic angiogenesis in ischaemia. Nat Biomed Eng. 1:0083. Erratum in: Nat Biomed Eng 2020;4:572. DOI: 10.1038/s41551-020-0552-7. PMID: 32251393. PMCID: PMC5837070.
Article
77. Pham MT, Pollock KM, Rose MD, Cary WA, Stewart HR, Zhou P, Nolta JA, Waldau B. 2018; Generation of human vascularized brain organoids. Neuroreport. 29:588–593. DOI: 10.1097/WNR.0000000000001014. PMID: 29570159. PMCID: PMC6476536.
Article
78. Shi Y, Sun L, Wang M, Liu J, Zhong S, Li R, Li P, Guo L, Fang A, Chen R, Ge WP, Wu Q, Wang X. 2020; Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biol. 18:e3000705. DOI: 10.1371/journal.pbio.3000705. PMID: 32401820. PMCID: PMC7250475. PMID: 66f6d290c2f84ede886185d58cd7368f.
Article
79. Cakir B, Xiang Y, Tanaka Y, Kural MH, Parent M, Kang YJ, Chapeton K, Patterson B, Yuan Y, He CS, Raredon MSB, Dengelegi J, Kim KY, Sun P, Zhong M, Lee S, Patra P, Hyder F, Niklason LE, Lee SH, Yoon YS, Park IH. 2019; Engineering of human brain organoids with a functional vascular-like system. Nat Methods. 16:1169–1175. DOI: 10.1038/s41592-019-0586-5. PMID: 31591580. PMCID: PMC6918722.
Article
80. Cho AN, Jin Y, An Y, Kim J, Choi YS, Lee JS, Kim J, Choi WY, Koo DJ, Yu W, Chang GE, Kim DY, Jo SH, Kim J, Kim SY, Kim YG, Kim JY, Choi N, Cheong E, Kim YJ, Je HS, Kang HC, Cho SW. 2021; Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat Commun. 12:4730. DOI: 10.1038/s41467-021-24775-5. PMID: 34354063. PMCID: PMC8342542. PMID: 4baaa6ea520348a5bdc13ee2f2a1412c.
Article
81. Wang Y, Wang L, Guo Y, Zhu Y, Qin J. 2018; Engineering stem cell-derived 3D brain organoids in a perfusable organ-on-a-chip system. RSC Adv. 8:1677–1685. DOI: 10.1039/C7RA11714K.
Article
82. Berger E, Magliaro C, Paczia N, Monzel AS, Antony P, Linster CL, Bolognin S, Ahluwalia A, Schwamborn JC. 2018; Millifluidic culture improves human midbrain organoid vitality and differentiation. Lab Chip. 18:3172–3183. DOI: 10.1039/C8LC00206A. PMID: 30204191.
Article
83. Mansour AA, Gonçalves JT, Bloyd CW, Li H, Fernandes S, Quang D, Johnston S, Parylak SL, Jin X, Gage FH. 2018; An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol. 36:432–441. DOI: 10.1038/nbt.4127. PMID: 29658944. PMCID: PMC6331203.
Article
84. Wolf SA, Boddeke HW, Kettenmann H. 2017; Microglia in physiology and disease. Annu Rev Physiol. 79:619–643. DOI: 10.1146/annurev-physiol-022516-034406. PMID: 27959620.
Article
85. Casano AM, Peri F. 2015; Microglia: multitasking specialists of the brain. Dev Cell. 32:469–477. DOI: 10.1016/j.devcel.2015.01.018. PMID: 25710533.
Article
86. Ormel PR, Vieira de Sá R, van Bodegraven EJ, Karst H, Harschnitz O, Sneeboer MAM, Johansen LE, van Dijk RE, Scheefhals N, Berdenis van Berlekom A, Ribes Martínez E, Kling S, MacGillavry HD, van den Berg LH, Kahn RS, Hol EM, de Witte LD, Pasterkamp RJ. 2018; Microglia innately develop within cerebral organoids. Nat Commun. 9:4167. DOI: 10.1038/s41467-018-06684-2. PMID: 30301888. PMCID: PMC6177485. PMID: 0f43c1e80fff44ada197169a4b75a7dc.
Article
87. Xu R, Boreland AJ, Li X, Erickson C, Jin M, Atkins C, Pang ZP, Daniels BP, Jiang P. 2021; Developing human pluripotent stem cell-based cerebral organoids with a controllable microglia ratio for modeling brain development and pathology. Stem Cell Reports. 16:1923–1937. DOI: 10.1016/j.stemcr.2021.06.011. PMID: 34297942. PMCID: PMC8365109.
Article
88. Siegenthaler JA, Ashique AM, Zarbalis K, Patterson KP, Hecht JH, Kane MA, Folias AE, Choe Y, May SR, Kume T, Napoli JL, Peterson AS, Pleasure SJ. 2009; Retinoic acid from the meninges regulates cortical neuron generation. Cell. 139:597–609. Erratum in: Cell 2011;146:486. DOI: 10.1016/j.cell.2011.07.011. PMID: 19879845. PMCID: PMC2772834.
Article
89. D'Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T. 1995; A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature. 374:719–723. DOI: 10.1038/374719a0. PMID: 7715726.
90. D'Arcangelo G, Nakajima K, Miyata T, Ogawa M, Mikoshiba K, Curran T. 1997; Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J Neurosci. 17:23–31. DOI: 10.1523/JNEUROSCI.17-01-00023.1997. PMID: 8987733. PMCID: PMC6793694.
91. Del Río JA, Heimrich B, Borrell V, Förster E, Drakew A, Alcántara S, Nakajima K, Miyata T, Ogawa M, Mikoshiba K, Derer P, Frotscher M, Soriano E. 1997; A role for Cajal-Retzius cells and reelin in the development of hippocampal connections. Nature. 385:70–74. DOI: 10.1038/385070a0. PMID: 8985248.
Article
92. Jacob F, Pather SR, Huang WK, Zhang F, Wong SZH, Zhou H, Cubitt B, Fan W, Chen CZ, Xu M, Pradhan M, Zhang DY, Zheng W, Bang AG, Song H, Carlos de la Torre J, Ming GL. 2020; Human pluripotent stem cell-derived neural cells and brain organoids reveal SARS-CoV-2 neurotropism predominates in choroid plexus epithelium. Cell Stem Cell. 27:937–950.e9. DOI: 10.1016/j.stem.2020.09.016. PMID: 33010822. PMCID: PMC7505550.
Article
93. Pellegrini L, Albecka A, Mallery DL, Kellner MJ, Paul D, Carter AP, James LC, Lancaster MA. 2020; SARS-CoV-2 infects the brain choroid plexus and disrupts the blood-CSF barrier in human brain organoids. Cell Stem Cell. 27:951–961.e5. DOI: 10.1016/j.stem.2020.10.001. PMID: 33113348. PMCID: PMC7553118.
Article
94. Faustino Martins JM, Fischer C, Urzi A, Vidal R, Kunz S, Ruffault PL, Kabuss L, Hube I, Gazzerro E, Birchmeier C, Spuler S, Sauer S, Gouti M. 2020; Self-organizing 3D human trunk neuromuscular organoids. Cell Stem Cell. 27:498. Erratum for: Cell Stem Cell 2020;26:172-186.e6. DOI: 10.1016/j.stem.2019.12.007. PMID: 31956040.
Article
95. Wagner DE, Klein AM. 2020; Lineage tracing meets single-cell omics: opportunities and challenges. Nat Rev Genet. 21:410–427. DOI: 10.1038/s41576-020-0223-2. PMID: 32235876. PMCID: PMC7307462.
Article
96. Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EH. 2008; Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science. 322:1065–1069. DOI: 10.1126/science.1162493. PMID: 18845710.
Article
97. McDole K, Guignard L, Amat F, Berger A, Malandain G, Royer LA, Turaga SC, Branson K, Keller PJ. 2018; In toto imaging and reconstruction of post-implantation mouse development at the single-cell level. Cell. 175:859–876.e33. DOI: 10.1016/j.cell.2018.09.031. PMID: 30318151.
Article
98. Behjati S, Huch M, van Boxtel R, Karthaus W, Wedge DC, Tamuri AU, Martincorena I, Petljak M, Alexandrov LB, Gundem G, Tarpey PS, Roerink S, Blokker J, Maddison M, Mudie L, Robinson B, Nik-Zainal S, Campbell P, Goldman N, van de Wetering M, Cuppen E, Clevers H, Stratton MR. 2014; Genome sequencing of normal cells reveals developmental lineages and mutational processes. Nature. 513:422–425. DOI: 10.1038/nature13448. PMID: 25043003. PMCID: PMC4227286.
Article
99. Lodato MA, Woodworth MB, Lee S, Evrony GD, Mehta BK, Karger A, Lee S, Chittenden TW, D'Gama AM, Cai X, Luquette LJ, Lee E, Park PJ, Walsh CA. 2015; Somatic mutation in single human neurons tracks developmental and transcriptional history. Science. 350:94–98. DOI: 10.1126/science.aab1785. PMID: 26430121. PMCID: PMC4664477.
Article
100. Evrony GD, Lee E, Mehta BK, Benjamini Y, Johnson RM, Cai X, Yang L, Haseley P, Lehmann HS, Park PJ, Walsh CA. 2015; Cell lineage analysis in human brain using endogenous retroelements. Neuron. 85:49–59. DOI: 10.1016/j.neuron.2014.12.028. PMID: 25569347. PMCID: PMC4299461.
Article
101. Del Dosso A, Urenda JP, Nguyen T, Quadrato G. 2020; Upgrading the physiological relevance of human brain organoids. Neuron. 107:1014–1028. DOI: 10.1016/j.neuron.2020.08.029. PMID: 32970996.
Article
102. McKenna A, Gagnon JA. 2019; Recording development with single cell dynamic lineage tracing. Development. 146:dev169730. DOI: 10.1242/dev.169730. PMID: 31249005. PMCID: PMC6602349.
Article
103. Sun J, Ramos A, Chapman B, Johnnidis JB, Le L, Ho YJ, Klein A, Hofmann O, Camargo FD. 2014; Clonal dynamics of native haematopoiesis. Nature. 514:322–327. DOI: 10.1038/nature13824. PMID: 25296256. PMCID: PMC4408613.
Article
104. Wagner DE, Weinreb C, Collins ZM, Briggs JA, Megason SG, Klein AM. 2018; Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science. 360:981–987. DOI: 10.1126/science.aar4362. PMID: 29700229. PMCID: PMC6083445.
Article
105. Weinreb C, Rodriguez-Fraticelli A, Camargo FD, Klein AM. 2020; Lineage tracing on transcriptional landscapes links state to fate during differentiation. Science. 367:eaaw3381. DOI: 10.1126/science.aaw3381. PMID: 31974159. PMCID: PMC7608074.
Article
106. Biddy BA, Kong W, Kamimoto K, Guo C, Waye SE, Sun T, Morris SA. 2018; Single-cell mapping of lineage and identity in direct reprogramming. Nature. 564:219–224. DOI: 10.1038/s41586-018-0744-4. PMID: 30518857. PMCID: PMC6635140.
Article
107. Pei W, Feyerabend TB, Rössler J, Wang X, Postrach D, Busch K, Rode I, Klapproth K, Dietlein N, Quedenau C, Chen W, Sauer S, Wolf S, Höfer T, Rodewald HR. 2017; Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature. 548:456–460. DOI: 10.1038/nature23653. PMID: 28813413. PMCID: PMC5905670.
Article
108. Frieda KL, Linton JM, Hormoz S, Choi J, Chow KK, Singer ZS, Budde MW, Elowitz MB, Cai L. 2017; Synthetic recording and in situ readout of lineage information in single cells. Nature. 541:107–111. DOI: 10.1038/nature20777. PMID: 27869821. PMCID: PMC6487260.
Article
109. McKenna A, Findlay GM, Gagnon JA, Horwitz MS, Schier AF, Shendure J. 2016; Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science. 353:aaf7907. DOI: 10.1126/science.aaf7907. PMID: 27229144. PMCID: PMC4967023.
Article
110. Raj B, Wagner DE, McKenna A, Pandey S, Klein AM, Shendure J, Gagnon JA, Schier AF. 2018; Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. Nat Biotechnol. 36:442–450. DOI: 10.1038/nbt.4103. PMID: 29608178. PMCID: PMC5938111.
Article
111. Alemany A, Florescu M, Baron CS, Peterson-Maduro J, van Oudenaarden A. 2018; Whole-organism clone tracing using single-cell sequencing. Nature. 556:108–112. DOI: 10.1038/nature25969. PMID: 29590089.
Article
112. Spanjaard B, Hu B, Mitic N, Olivares-Chauvet P, Janjuha S, Ninov N, Junker JP. 2018; Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars. Nat Biotechnol. 36:469–473. DOI: 10.1038/nbt.4124. PMID: 29644996. PMCID: PMC5942543.
Article
113. Kalhor R, Kalhor K, Mejia L, Leeper K, Graveline A, Mali P, Church GM. 2018; Developmental barcoding of whole mouse via homing CRISPR. Science. 361:eaat9804. DOI: 10.1126/science.aat9804. PMID: 30093604. PMCID: PMC6139672.
Article
114. VanHorn S, Morris SA. 2021; Next-generation lineage tracing and fate mapping to interrogate development. Dev Cell. 56:7–21. DOI: 10.1016/j.devcel.2020.10.021. PMID: 33217333.
Article
115. Loveless TB, Grotts JH, Schechter MW, Forouzmand E, Carlson CK, Agahi BS, Liang G, Ficht M, Liu B, Xie X, Liu CC. 2021; Lineage tracing and analog recording in mammalian cells by single-site DNA writing. Nat Chem Biol. 17:739–747. DOI: 10.1038/s41589-021-00769-8. PMID: 33753928.
Article
116. He Z, Gerber T, Maynard A, Jain A, Petri R, Santel M, Ly K, Sidow L, Sanchís-Calleja F, Riesenberg S, Camp JG, Treutlein B. 2020. Lineage recording reveals dynamics of cerebral organoid regionalization. bioRxiv 162032 [Preprint]. Available from: https://doi.org/10.1101/2020.06.19.162032. cited 2020 Jun 26. DOI: 10.1101/2020.06.19.162032.
Article
117. Camp JG, Badsha F, Florio M, Kanton S, Gerber T, Wilsch-Bräuninger M, Lewitus E, Sykes A, Hevers W, Lancaster M, Knoblich JA, Lachmann R, Pääbo S, Huttner WB, Treutlein B. 2015; Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci U S A. 112:15672–15677. DOI: 10.1073/pnas.1520760112. PMID: 26644564. PMCID: PMC4697386.
Article
118. Marton RM, Miura Y, Sloan SA, Li Q, Revah O, Levy RJ, Huguenard JR, Pașca SP. 2019; Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures. Nat Neurosci. 22:484–491. DOI: 10.1038/s41593-018-0316-9. PMID: 30692691. PMCID: PMC6788758.
Article
119. Ziffra RS, Kim CN, Wilfert A, Turner TN, Haeussler M, Casella AM, Przytycki PF, Kreimer A, Pollard KS, Ament SA, Eichler EE, Ahituv N, Nowakowski TJ. 2020. Single cell epigenomic atlas of the developing human brain and organoids. bioRxiv 891549 [Preprint]. Available from: https://doi.org/10.1101/2019.12.30.891549. cited 2020 Jan 8. DOI: 10.1101/2019.12.30.891549. PMID: 32477718. PMCID: PMC7252788.
Article
120. Sloan SA, Darmanis S, Huber N, Khan TA, Birey F, Caneda C, Reimer R, Quake SR, Barres BA, Paşca SP. 2017; Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. Neuron. 95:779–790.e6. DOI: 10.1016/j.neuron.2017.07.035. PMID: 28817799. PMCID: PMC5890820.
Article
121. Betjes MA, Zheng X, Kok RNU, van Zon JS, Tans SJ. 2021; Cell tracking for organoids: lessons from developmental biology. Front Cell Dev Biol. 9:675013. DOI: 10.3389/fcell.2021.675013. PMID: 34150770. PMCID: PMC8209328. PMID: 498c79092a70496097d2d953a769c13c.
Article
122. Lo YH, Karlsson K, Kuo CJ. 2020; Applications of organoids for cancer biology and precision medicine. Nat Cancer. 1:761–773. DOI: 10.1038/s43018-020-0102-y. PMID: 34142093. PMCID: PMC8208643.
Article
123. Sugimoto S, Ohta Y, Fujii M, Matano M, Shimokawa M, Nanki K, Date S, Nishikori S, Nakazato Y, Nakamura T, Kanai T, Sato T. 2018; Reconstruction of the human colon epithelium in vivo. Cell Stem Cell. 22:171–176.e5. DOI: 10.1016/j.stem.2017.11.012. PMID: 29290616.
Article
124. Bell C, Fang W, Berlinicke C, Kaushik A, Zhang P, Wang T, Kalhor R, Ji H, Zack D. 2020; Single-cell lineage tracing of developing retinal systems. Invest Ophthalmol Vis Sci. 61:4014.
125. Zhang M, Torres Z, Owens D, Suter R, Ayad N, Harbour J, Pelaez D. 2020; Lineage tracing in retinal organoids as a platform for studying retinoblastoma. Invest Ophthalmol Vis Sci. 61:3815.
126. Poli D, Magliaro C, Ahluwalia A. 2019; Experimental and computational methods for the study of cerebral organoids: a review. Front Neurosci. 13:162. DOI: 10.3389/fnins.2019.00162. PMID: 30890910. PMCID: PMC6411764.
Article
127. Chen BC, Legant WR, Wang K, Shao L, Milkie DE, Davidson MW, Janetopoulos C, Wu XS, Hammer JA 3rd, Liu Z, English BP, Mimori-Kiyosue Y, Romero DP, Ritter AT, Lippincott-Schwartz J, Fritz-Laylin L, Mullins RD, Mitchell DM, Bembenek JN, Reymann AC, Böhme R, Grill SW, Wang JT, Seydoux G, Tulu US, Kiehart DP, Betzig E. 2014; Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science. 346:1257998. DOI: 10.1126/science.1257998. PMID: 25342811. PMCID: PMC4336192.
Article
128. Schöneberg J, Dambournet D, Liu TL, Forster R, Hockemeyer D, Betzig E, Drubin DG. 2018; 4D cell biology: big data image analytics and lattice light-sheet imaging reveal dynamics of clathrin-mediated endocytosis in stem cell-derived intestinal organoids. Mol Biol Cell. 29:2959–2968. DOI: 10.1091/mbc.E18-06-0375. PMID: 30188768. PMCID: PMC6329908.
Article
129. Lavagnino Z, Sancataldo G, d'Amora M, Follert P, De Pietri Tonelli D, Diaspro A, Cella Zanacchi F. 2016; 4D (x-y-z-t) imaging of thick biological samples by means of two-photon inverted selective plane illumination microscopy (2PE-iSPIM). Sci Rep. 6:23923. DOI: 10.1038/srep23923. PMID: 27033347. PMCID: PMC4817031.
Article
130. Sakaguchi H, Ozaki Y, Ashida T, Matsubara T, Oishi N, Kihara S, Takahashi J. 2019; Self-organized synchronous calcium transients in a cultured human neural network derived from cerebral organoids. Stem Cell Reports. 13:458–473. DOI: 10.1016/j.stemcr.2019.05.029. PMID: 31257131. PMCID: PMC6739638.
Article
131. Miller EW, Lin JY, Frady EP, Steinbach PA, Kristan WB Jr, Tsien RY. 2012; Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires. Proc Natl Acad Sci U S A. 109:2114–2119. DOI: 10.1073/pnas.1120694109. PMID: 22308458. PMCID: PMC3277584.
Article
132. Yan P, Acker CD, Zhou WL, Lee P, Bollensdorff C, Negrean A, Lotti J, Sacconi L, Antic SD, Kohl P, Mansvelder HD, Pavone FS, Loew LM. 2012; Palette of fluorinated voltage-sensitive hemicyanine dyes. Proc Natl Acad Sci U S A. 109:20443–20448. DOI: 10.1073/pnas.1214850109. PMID: 23169660. PMCID: PMC3528613.
Article
133. Hochbaum DR, Zhao Y, Farhi SL, Klapoetke N, Werley CA, Kapoor V, Zou P, Kralj JM, Maclaurin D, Smedemark-Margulies N, Saulnier JL, Boulting GL, Straub C, Cho YK, Melkonian M, Wong GK, Harrison DJ, Murthy VN, Sabatini BL, Boyden ES, Campbell RE, Cohen AE. 2014; All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat Methods. 11:825–833. DOI: 10.1038/nmeth.3000. PMID: 24952910. PMCID: PMC4117813.
Article
134. Puppo F, Sadegh S, Trujillo CA, Thunemann M, Campbell EP, Vandenberghe M, Shan X, Akkouh IA, Miller EW, Bloodgood BL, Silva GA, Dale AM, Einevoll GT, Djurovic S, Andreassen OA, Muotri AR, Devor A. 2021; All-optical electrophysiology in hiPSC-derived neurons with synthetic voltage sensors. Front Cell Neurosci. 15:671549. DOI: 10.3389/fncel.2021.671549. PMID: 34122014. PMCID: PMC8193062. PMID: 9cc7f85830ed4333932e3c468dab069e.
Article
135. Trujillo CA, Gao R, Negraes PD, Gu J, Buchanan J, Preissl S, Wang A, Wu W, Haddad GG, Chaim IA, Domissy A, Vandenberghe M, Devor A, Yeo GW, Voytek B, Muotri AR. 2019; Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell. 25:558–569.e7. DOI: 10.1016/j.stem.2019.08.002. PMID: 31474560. PMCID: PMC6778040.
Article
136. Fair SR, Julian D, Hartlaub AM, Pusuluri ST, Malik G, Summerfied TL, Zhao G, Hester AB, Ackerman WE 4th, Hollingsworth EW, Ali M, McElroy CA, Buhimschi IA, Imitola J, Maitre NL, Bedrosian TA, Hester ME. 2020; Electrophysiological maturation of cerebral organoids correlates with dynamic morphological and cellular development. Stem Cell Reports. 15:855–868. DOI: 10.1016/j.stemcr.2020.08.017. PMID: 32976764. PMCID: PMC7562943.
Article
137. Soscia DA, Lam D, Tooker AC, Enright HA, Triplett M, Karande P, Peters SKG, Sales AP, Wheeler EK, Fischer NO. 2020; A flexible 3-dimensional microelectrode array for in vitro brain models. Lab Chip. 20:901–911. DOI: 10.1039/C9LC01148J. PMID: 31976505.
Article
138. Didier CM, Kundu A, DeRoo D, Rajaraman S. 2020; Development of in vitro 2D and 3D microelectrode arrays and their role in advancing biomedical research. J Micromech Microeng. 30:103001. DOI: 10.1088/1361-6439/ab8e91.
Article
139. Yuan X, Schröter M, Obien MEJ, Fiscella M, Gong W, Kikuchi T, Odawara A, Noji S, Suzuki I, Takahashi J, Hierlemann A, Frey U. 2020; Versatile live-cell activity analysis platform for characterization of neuronal dynamics at single-cell and network level. Nat Commun. 11:4854. DOI: 10.1038/s41467-020-18620-4. PMID: 32978383. PMCID: PMC7519655. PMID: a0577c2ed2304ba1ab8ed0c9e23fe0c6.
Article
140. Georgiou M, Chichagova V, Hilgen G, Dorgau B, Sernagor E, Armstrong L, Lako M. 2020; Room temperature shipment does not affect the biological activity of pluripotent stem cell-derived retinal organoids. PLoS One. 15:e0233860. DOI: 10.1371/journal.pone.0233860. PMID: 32479513. PMCID: PMC7263587. PMID: 94c41d09b84e44518d9a9abf9646d13b.
Article
141. Mellough CB, Collin J, Queen R, Hilgen G, Dorgau B, Zerti D, Felemban M, White K, Sernagor E, Lako M. 2019; Systematic comparison of retinal organoid differentiation from human pluripotent stem cells reveals stage specific, cell line, and methodological differences. Stem Cells Transl Med. 8:694–706. DOI: 10.1002/sctm.18-0267. PMID: 30916455. PMCID: PMC6591558.
Article
142. Shin H, Jeong S, Lee JH, Sun W, Choi N, Cho IJ. 2021; 3D high-density microelectrode array with optical stimulation and drug delivery for investigating neural circuit dynamics. Nat Commun. 12:492. DOI: 10.1038/s41467-020-20763-3. PMID: 33479237. PMCID: PMC7820464. PMID: b7878afc0e8744b9ab07f36f00339340.
Article
143. Shim C, Jo Y, Cha HK, Kim MK, Kim H, Kook G, Kim K, Son GH, Lee HJ. 2020. Highly stretchable microelectrode array for free-form 3D neuronal tissue. Paper presented at: 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS). 2020 Jan 18-22; Vancouver, Canada. DOI: 10.1109/MEMS46641.2020.9056250. PMID: 34567573. PMCID: PMC8460092.
Article
144. Park Y, Franz CK, Ryu H, Luan H, Cotton KY, Kim JU, Chung TS, Zhao S, Vazquez-Guardado A, Yang DS, Li K, Avila R, Phillips JK, Quezada MJ, Jang H, Kwak SS, Won SM, Kwon K, Jeong H, Bandodkar AJ, Han M, Zhao H, Osher GR, Wang H, Lee K, Zhang Y, Huang Y, Finan JD, Rogers JA. 2021; Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids. Sci Adv. 7:eabf9153. DOI: 10.1126/sciadv.abf9153. PMID: 33731359. PMCID: PMC7968849.
Article
145. Adly N, Weidlich S, Seyock S, Brings F, Yakushenko A, Offenhäusser A, Wolfrum B. 2018; Printed microelectrode arrays on soft materials: from PDMS to hydrogels. npj Flex Electron. 2:15. DOI: 10.1038/s41528-018-0027-z. PMID: ca02f5e1127145a9ad370c9dc716b7d4.
Article
146. Ryynänen T, Pelkonen A, Grigoras K, Ylivaara OME, Hyvärinen T, Ahopelto J, Prunnila M, Narkilahti S, Lekkala J. 2019; Microelectrode array with transparent ALD TiN electrodes. Front Neurosci. 13:226. DOI: 10.3389/fnins.2019.00226. PMID: 30967754. PMCID: PMC6438859.
Article
147. Atmaramani R, Chakraborty B, Rihani RT, Usoro J, Hammack A, Abbott J, Nnoromele P, Black BJ, Pancrazio JJ, Cogan SF. 2020; Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation. Acta Biomater. 101:565–574. DOI: 10.1016/j.actbio.2019.10.040. PMID: 31678740. PMCID: PMC7197741.
Article
148. Li Q, Nan K, Le Floch P, Lin Z, Sheng H, Blum TS, Liu J. 2019; Cyborg organoids: implantation of nanoelectronics via organogenesis for tissue-wide electrophysiology. Nano Lett. 19:5781–5789. DOI: 10.1021/acs.nanolett.9b02512. PMID: 31347851.
Article
149. Le Floch P, Li Q, Liu R, Tasnim K, Zhao S, Lin Z, Jiang H, Liu J. 2021. A method for three-dimensional single-cell chronic electrophysiology from developing brain organoids. bioRxiv 449502 [Preprint]. Available from: https://doi.org/10.1101/2021.06.22.449502. cited 2021 Jun 21. DOI: 10.1101/2021.06.22.449502.
Article
150. Li H, Wang J, Fang Y. 2020; Bioinspired flexible electronics for seamless neural interfacing and chronic recording. Nanoscale Adv. 2:3095–3102. DOI: 10.1039/D0NA00323A.
Article
151. Tian B, Liu J, Dvir T, Jin L, Tsui JH, Qing Q, Suo Z, Langer R, Kohane DS, Lieber CM. 2012; Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat Mater. 11:986–994. DOI: 10.1038/nmat3404. PMID: 22922448. PMCID: PMC3623694.
Article
152. Yang X, Zhou T, Zwang TJ, Hong G, Zhao Y, Viveros RD, Fu TM, Gao T, Lieber CM. 2019; Bioinspired neuron-like electronics. Nat Mater. 18:510–517. DOI: 10.1038/s41563-019-0292-9. PMID: 30804509. PMCID: PMC6474791.
Article
153. Miccoli B, Lopez CM, Goikoetxea E, Putzeys J, Sekeri M, Krylychkina O, Chang SW, Firrincieli A, Andrei A, Reumers V, Braeken D. 2019; High-density electrical recording and impedance imaging with a multi-modal CMOS multi-electrode array chip. Front Neurosci. 13:641. DOI: 10.3389/fnins.2019.00641. PMID: 31293372. PMCID: PMC6603149.
Article
154. Li Q, Lin Z, Liu R, Tang X, Huang J, He Y, Zhou H, Sheng H, Shi H, Wang X, Liu J. 2021. In situ electro-sequencing in three-dimensional tissues. bioRxiv 440941 [Preprint]. Available from: https://doi.org/10.1101/2021.04.22.440941. cited 2021 Apr 23. DOI: 10.1101/2021.04.22.440941.
Article
155. Zou L, Tian H, Guan S, Ding J, Gao L, Wang J, Fang Y. 2021; Self-assembled multifunctional neural probes for precise integration of optogenetics and electrophysiology. Nat Commun. 12:5871. DOI: 10.1038/s41467-021-26168-0. PMID: 34620851. PMCID: PMC8497603. PMID: 7d4c4e68cf9549b585b722c3f10c30e0.
Article
156. Shiri Z, Simorgh S, Naderi S, Baharvand H. 2019; Optogenetics in the era of cerebral organoids. Trends Biotechnol. 37:1282–1294. DOI: 10.1016/j.tibtech.2019.05.009. PMID: 31227305.
Article
157. Berglund K, Tung JK, Higashikubo B, Gross RE, Moore CI, Hochgeschwender U. 2016; Combined optogenetic and chemogenetic control of neurons. Methods Mol Biol. 1408:207–225. DOI: 10.1007/978-1-4939-3512-3_14. PMID: 26965125. PMCID: PMC5149414.
Article
158. Ngo HB, Melo MR, Layfield S, Connelly AA, Bassi JK, Xie L, Menuet C, McDougall SJ, Bathgate RAD, Allen AM. 2020; A chemogenetic tool that enables functional neural circuit analysis. Cell Rep. 32:108139. DOI: 10.1016/j.celrep.2020.108139. PMID: 32937120.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr