Int J Stem Cells.  2022 Feb;15(1):26-40. 10.15283/ijsc22006.

Region Specific Brain Organoids to Study Neurodevelopmental Disorders

Affiliations
  • 1Department of Genetics, Yale Stem Cell Center, Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA

Abstract

Region specific brain organoids are brain organoids derived by patterning protocols using extrinsic signals as opposed to cerebral organoids obtained by self-patterning. The main focus of this review is to discuss various region-specific brain organoids developed so far and their application in modeling neurodevelopmental disease. We first discuss the principles of neural axis formation by series of growth factors, such as SHH, WNT, BMP signalings, that are critical to generate various region-specific brain organoids. Then we discuss various neurodevelopmental disorders modeled so far with these region-specific brain organoids, and findings made on mechanism and treatment options for neurodevelopmental disorders (NDD).

Keyword

Neurodevelopmental disorders; Disease modeling; Brain organoids; Region-specific brain organoids; Human pluripotent stem cells

Figure

  • Fig. 1 Approaches for organoid ge-neration. Unguided approach: Orga-noids are developed based on self-organization principles of stem-cell aggregates resulting in cerebral orga-noids. Cerebral organoids contain heterogeneous population of tissues resembling various embryonic brain vesicles (middle panel). Guided approach: Stem-cell aggregates can be directed to distinct cell fates resulting in region-specific brain organoids in the presence of external patterning cues.


Cited by  2 articles

Lo and Behold, the Lab-Grown Organs Have Arrived!
Jaesang Kim
Int J Stem Cells. 2022;15(1):1-2.    doi: 10.15283/ijsc22026.

Transcriptional Signature of Valproic Acid-Induced Neural Tube Defects in Human Spinal Cord Organoids
Ju-Hyun Lee, Mohammed R. Shaker, Si-Hyung Park, Woong Sun
Int J Stem Cells. 2023;16(4):385-393.    doi: 10.15283/ijsc23012.


Reference

References

1. Boyle CA, Boulet S, Schieve LA, Cohen RA, Blumberg SJ, Yeargin-Allsopp M, Visser S, Kogan MD. 2011; Trends in the prevalence of developmental disabilities in US children, 1997-2008. Pediatrics. 127:1034–1042. DOI: 10.1542/peds.2010-2989. PMID: 21606152.
Article
2. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. 1998; Embryonic stem cell lines derived from human blastocysts. Science. 282:1145–1147. Erratum in: Science 1998;282:1827. DOI: 10.1126/science.282.5391.1145. PMID: 9804556.
Article
3. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. 2007; Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131:861–872. DOI: 10.1016/j.cell.2007.11.019. PMID: 18035408.
Article
4. Li L, Chao J, Shi Y. 2018; Modeling neurological diseases using iPSC-derived neural cells: iPSC modeling of neurological diseases. Cell Tissue Res. 371:143–151. DOI: 10.1007/s00441-017-2713-x. PMID: 29079884. PMCID: PMC6029980.
Article
5. Mariappan I, Maddileti S, Joseph P, Siamwala JH, Vauhini V. 2015; Enriched cultures of retinal cells from BJNhem20 human embryonic stem cell line of Indian origin. Invest Ophthalmol Vis Sci. 56:6714–6723. DOI: 10.1167/iovs.15-17364. PMID: 26567782.
Article
6. Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ. 2008; Disease-specific induced pluripotent stem cells. Cell. 134:877–886. DOI: 10.1016/j.cell.2008.07.041. PMID: 18691744. PMCID: PMC2633781.
Article
7. Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, Matsumura M, Wataya T, Nishiyama A, Muguruma K, Sasai Y. 2008; Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell. 3:519–532. DOI: 10.1016/j.stem.2008.09.002. PMID: 18983967.
Article
8. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA. 2013; Cerebral organoids model human brain development and microcephaly. Nature. 501:373–379. DOI: 10.1038/nature12517. PMID: 23995685. PMCID: PMC3817409.
Article
9. Camp JG, Badsha F, Florio M, Kanton S, Gerber T, Wilsch-Bräuninger M, Lewitus E, Sykes A, Hevers W, Lancaster M, Knoblich JA, Lachmann R, Pääbo S, Huttner WB, Treutlein B. 2015; Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci U S A. 112:15672–15677. DOI: 10.1073/pnas.1520760112. PMID: 26644564. PMCID: PMC4697386.
Article
10. Lancaster MA, Corsini NS, Wolfinger S, Gustafson EH, Phillips AW, Burkard TR, Otani T, Livesey FJ, Knoblich JA. 2017; Guided self-organization and cortical plate formation in human brain organoids. Nat Biotechnol. 35:659–666. Erratum in: Nat Biotechnol 2018;36:1016. DOI: 10.1038/nbt.3906. PMID: 28562594. PMCID: PMC5824977.
Article
11. Quadrato G, Nguyen T, Macosko EZ, Sherwood JL, Min Yang S, Berger DR, Maria N, Scholvin J, Goldman M, Kinney JP, Boyden ES, Lichtman JW, Williams ZM, McCarroll SA, Arlotta P. 2017; Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 545:48–53. DOI: 10.1038/nature22047. PMID: 28445462. PMCID: PMC5659341.
Article
12. Wang H. 2018; Modeling neurological diseases with human brain organoids. Front Synaptic Neurosci. 10:15. DOI: 10.3389/fnsyn.2018.00015. PMID: 29937727. PMCID: PMC6002496.
Article
13. Adams JW, Cugola FR, Muotri AR. 2019; Brain organoids as tools for modeling human neurodevelopmental disorders. Physiology (Bethesda). 34:365–375. DOI: 10.1152/physiol.00005.2019. PMID: 31389776. PMCID: PMC6863377.
Article
14. Zhang DY, Song H, Ming GL. 2021; Modeling neurological disorders using brain organoids. Semin Cell Dev Biol. 111:4–14. DOI: 10.1016/j.semcdb.2020.05.026. PMID: 32561297. PMCID: PMC7738381.
Article
15. Zhang W, Yang SL, Yang M, Herrlinger S, Shao Q, Collar JL, Fierro E, Shi Y, Liu A, Lu H, Herring BE, Guo ML, Buch S, Zhao Z, Xu J, Lu Z, Chen JF. 2019; Modeling microcephaly with cerebral organoids reveals a WDR62-CEP170-KIF2A pathway promoting cilium disassembly in neural progenitors. Nat Commun. 10:2612. DOI: 10.1038/s41467-019-10497-2. PMID: 31197141. PMCID: PMC6565620. PMID: fe809d4eaad64cd5995ce2a720fd1c05.
Article
16. Coulter ME, Dorobantu CM, Lodewijk GA, Delalande F, Cianferani S, Ganesh VS, Smith RS, Lim ET, Xu CS, Pang S, Wong ET, Lidov HGW, Calicchio ML, Yang E, Gonzalez DM, Schlaeger TM, Mochida GH, Hess H, Lee WA, Lehtinen MK, Kirchhausen T, Haussler D, Jacobs FMJ, Gaudin R, Walsh CA. 2018; The ESCRT-III protein CHMP1A mediates secretion of sonic hedgehog on a distinctive subtype of extracellular vesicles. Cell Rep. 24:973–986.e8. DOI: 10.1016/j.celrep.2018.06.100. PMID: 30044992. PMCID: PMC6178983.
Article
17. Jin M, Pomp O, Shinoda T, Toba S, Torisawa T, Furuta K, Oiwa K, Yasunaga T, Kitagawa D, Matsumura S, Miyata T, Tan TT, Reversade B, Hirotsune S. 2017; Katanin p80, NuMA and cytoplasmic dynein cooperate to control microtubule dynamics. Sci Rep. 7:39902. DOI: 10.1038/srep39902. PMID: 28079116. PMCID: PMC5228124.
Article
18. Bershteyn M, Nowakowski TJ, Pollen AA, Di Lullo E, Nene A, Wynshaw-Boris A, Kriegstein AR. 2017; Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia. Cell Stem Cell. 20:435–449.e4. DOI: 10.1016/j.stem.2016.12.007. PMID: 28111201. PMCID: PMC5667944.
Article
19. Li Y, Muffat J, Omer A, Bosch I, Lancaster MA, Sur M, Gehrke L, Knoblich JA, Jaenisch R. 2017; Induction of expansion and folding in human cerebral organoids. Cell Stem Cell. 20:385–396.e3. DOI: 10.1016/j.stem.2016.11.017. PMID: 28041895. PMCID: PMC6461394.
Article
20. Gabriel E, Wason A, Ramani A, Gooi LM, Keller P, Pozniakovsky A, Poser I, Noack F, Telugu NS, Calegari F, Šarić T, Hescheler J, Hyman AA, Gottardo M, Callaini G, Alkuraya FS, Gopalakrishnan J. 2016; CPAP promotes timely cilium disassembly to maintain neural progenitor pool. EMBO J. 35:803–819. DOI: 10.15252/embj.201593679. PMID: 26929011. PMCID: PMC4972140.
Article
21. O'Neill AC, Kyrousi C, Klaus J, Leventer RJ, Kirk EP, Fry A, Pilz DT, Morgan T, Jenkins ZA, Drukker M, Berkovic SF, Scheffer IE, Guerrini R, Markie DM, Götz M, Cappello S, Robertson SP. 2018; A primate-specific isoform of PLEKHG6 regulates neurogenesis and neuronal migration. Cell Rep. 25:2729–2741.e6. DOI: 10.1016/j.celrep.2018.11.029. PMID: 30517861.
22. Klaus J, Kanton S, Kyrousi C, Ayo-Martin AC, Di Giaimo R, Riesenberg S, O'Neill AC, Camp JG, Tocco C, Santel M, Rusha E, Drukker M, Schroeder M, Götz M, Robertson SP, Treutlein B, Cappello S. 2019; Altered neuronal migratory trajectories in human cerebral organoids derived from individuals with neuronal heterotopia. Nat Med. 25:561–568. DOI: 10.1038/s41591-019-0371-0. PMID: 30858616.
Article
23. Srikanth P, Lagomarsino VN, Muratore CR, Ryu SC, He A, Taylor WM, Zhou C, Arellano M, Young-Pearse TL. 2018; Shared effects of DISC1 disruption and elevated WNT signaling in human cerebral organoids. Transl Psychiatry. 8:77. DOI: 10.1038/s41398-018-0122-x. PMID: 29643329. PMCID: PMC5895714.
Article
24. Johnstone M, Vasistha NA, Barbu MC, Dando O, Burr K, Christopher E, Glen S, Robert C, Fetit R, Macleod KG, Livesey MR, Clair DS, Blackwood DHR, Millar K, Carragher NO, Hardingham GE, Wyllie DJA, Johnstone EC, Whalley HC, McIntosh AM, Lawrie SM, Chandran S. 2019; Reversal of proliferation deficits caused by chromosome 16p13.11 microduplication through targeting NFκB signaling: an integrated study of patient-derived neuronal precursor cells, cerebral organoids and in vivo brain imaging. Mol Psychiatry. 24:294–311. DOI: 10.1038/s41380-018-0292-1. PMID: 30401811. PMCID: PMC6344377.
Article
25. Stachowiak EK, Benson CA, Narla ST, Dimitri A, Chuye LEB, Dhiman S, Harikrishnan K, Elahi S, Freedman D, Brennand KJ, Sarder P, Stachowiak MK. 2017; Cerebral organoids reveal early cortical maldevelopment in schizophrenia-computational anatomy and genomics, role of FGFR1. Transl Psychiatry. 7:6. DOI: 10.1038/s41398-017-0054-x. PMID: 30446636. PMCID: PMC5802550.
Article
26. Wang P, Mokhtari R, Pedrosa E, Kirschenbaum M, Bayrak C, Zheng D, Lachman HM. 2017; CRISPR/Cas9-me-diated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells. Mol Autism. 8:11. DOI: 10.1186/s13229-017-0124-1. PMID: 28321286. PMCID: PMC5357816.
Article
27. Xu R, Brawner AT, Li S, Liu JJ, Kim H, Xue H, Pang ZP, Kim WY, Hart RP, Liu Y, Jiang P. 2019; OLIG2 drives abnormal neurodevelopmental phenotypes in human iPSC-based organoid and chimeric mouse models of down syndrome. Cell Stem Cell. 24:908–926.e8. DOI: 10.1016/j.stem.2019.04.014. PMID: 31130512. PMCID: PMC6944064.
Article
28. Mellios N, Feldman DA, Sheridan SD, Ip JPK, Kwok S, Amoah SK, Rosen B, Rodriguez BA, Crawford B, Swaminathan R, Chou S, Li Y, Ziats M, Ernst C, Jaenisch R, Haggarty SJ, Sur M. 2018; MeCP2-regulated miRNAs control early human neurogenesis through differential effects on ERK and AKT signaling. Mol Psychiatry. 23:1051–1065. DOI: 10.1038/mp.2017.86. PMID: 28439102. PMCID: PMC5815944.
Article
29. Latour YL, Yoon R, Thomas SE, Grant C, Li C, Sena-Esteves M, Allende ML, Proia RL, Tifft CJ. 2019; Human GLB1 knockout cerebral organoids: a model system for testing AAV9-mediated GLB1 gene therapy for reducing GM1 ganglioside storage in GM1 gangliosidosis. Mol Genet Metab Rep. 21:100513. DOI: 10.1016/j.ymgmr.2019.100513. PMID: 31534909. PMCID: PMC6744524.
Article
30. Allende ML, Cook EK, Larman BC, Nugent A, Brady JM, Golebiowski D, Sena-Esteves M, Tifft CJ, Proia RL. 2018; Cerebral organoids derived from Sandhoff disease-induced pluripotent stem cells exhibit impaired neurodifferen-tiation. J Lipid Res. 59:550–563. DOI: 10.1194/jlr.M081323. PMID: 29358305. PMCID: PMC5832932.
Article
31. Gonzalez C, Armijo E, Bravo-Alegria J, Becerra-Calixto A, Mays CE, Soto C. 2018; Modeling amyloid beta and tau pathology in human cerebral organoids. Mol Psychiatry. 23:2363–2374. DOI: 10.1038/s41380-018-0229-8. PMID: 30171212. PMCID: PMC6594704.
Article
32. Lin YT, Seo J, Gao F, Feldman HM, Wen HL, Penney J, Cam HP, Gjoneska E, Raja WK, Cheng J, Rueda R, Kritskiy O, Abdurrob F, Peng Z, Milo B, Yu CJ, Elmsaouri S, Dey D, Ko T, Yankner BA, Tsai LH. 2018; APOE4 causes widespread molecular and cellular alterations associated with Alzheimer's disease phenotypes in human iPSC-derived brain cell types. Neuron. 98:1141–1154.e7. Erratum in: Neuron 2018;98:1294. DOI: 10.1016/j.neuron.2018.05.008. PMID: 29861287. PMCID: PMC6023751.
Article
33. Meyer K, Feldman HM, Lu T, Drake D, Lim ET, Ling KH, Bishop NA, Pan Y, Seo J, Lin YT, Su SC, Church GM, Tsai LH, Yankner BA. 2019; REST and neural gene network dysregulation in iPSC models of Alzheimer's disease. Cell Rep. 26:1112–1127.e9. DOI: 10.1016/j.celrep.2019.01.023. PMID: 30699343. PMCID: PMC6386196.
Article
34. Seo J, Kritskiy O, Watson LA, Barker SJ, Dey D, Raja WK, Lin YT, Ko T, Cho S, Penney J, Silva MC, Sheridan SD, Lucente D, Gusella JF, Dickerson BC, Haggarty SJ, Tsai LH. 2017; Inhibition of p25/Cdk5 attenuates tauopathy in mouse and iPSC models of frontotemporal dementia. J Neurosci. 37:9917–9924. DOI: 10.1523/JNEUROSCI.0621-17.2017. PMID: 28912154. PMCID: PMC5637118.
Article
35. Groveman BR, Foliaki ST, Orru CD, Zanusso G, Carroll JA, Race B, Haigh CL. 2019; Sporadic Creutzfeldt-Jakob disease prion infection of human cerebral organoids. Acta Neuropathol Commun. 7:90. Erratum in: Acta Neuropathol Commun 2019;7:131. DOI: 10.1186/s40478-019-0742-2. PMID: 31196223. PMCID: PMC6567389. PMID: 9d2522f5b8ef46879d6c6efd4b996b79.
Article
36. Pérez-Brangulí F, Buchsbaum IY, Pozner T, Regensburger M, Fan W, Schray A, Börstler T, Mishra H, Gräf D, Kohl Z, Winkler J, Berninger B, Cappello S, Winner B. 2019; Human SPG11 cerebral organoids reveal cortical neurogenesis impairment. Hum Mol Genet. 28:961–971. DOI: 10.1093/hmg/ddy397. PMID: 30476097. PMCID: PMC6400051.
Article
37. Conforti P, Besusso D, Bocchi VD, Faedo A, Cesana E, Rossetti G, Ranzani V, Svendsen CN, Thompson LM, Toselli M, Biella G, Pagani M, Cattaneo E. 2018; Faulty neuronal determination and cell polarization are reverted by modulating HD early phenotypes. Proc Natl Acad Sci U S A. 115:E762–E771. Erratum in: Proc Natl Acad Sci U S A 2018;115:E2148. DOI: 10.1073/pnas.1715865115. PMID: 29311338. PMCID: PMC5789931.
Article
38. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. 2009; Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 27:275–280. Erratum in: Nat Biotechnol 2009;27:485. DOI: 10.1038/nbt.1529. PMID: 19252484. PMCID: PMC2756723.
Article
39. Kadoshima T, Sakaguchi H, Nakano T, Soen M, Ando S, Eiraku M, Sasai Y. 2013; Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc Natl Acad Sci U S A. 110:20284–20289. Erratum in: Proc Natl Acad Sci U S A 2014;111:7498. DOI: 10.1073/pnas.1315710110. PMID: 24277810. PMCID: PMC3864329.
Article
40. Mariani J, Coppola G, Zhang P, Abyzov A, Provini L, Tomasini L, Amenduni M, Szekely A, Palejev D, Wilson M, Gerstein M, Grigorenko EL, Chawarska K, Pelphrey KA, Howe JR, Vaccarino FM. 2015; FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell. 162:375–390. DOI: 10.1016/j.cell.2015.06.034. PMID: 26186191. PMCID: PMC4519016.
Article
41. Paşca AM, Sloan SA, Clarke LE, Tian Y, Makinson CD, Huber N, Kim CH, Park JY, O'Rourke NA, Nguyen KD, Smith SJ, Huguenard JR, Geschwind DH, Barres BA, Paşca SP. 2015; Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods. 12:671–678. DOI: 10.1038/nmeth.3415. PMID: 26005811. PMCID: PMC4489980.
Article
42. Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, Yao B, Hamersky GR, Jacob F, Zhong C, Yoon KJ, Jeang W, Lin L, Li Y, Thakor J, Berg DA, Zhang C, Kang E, Chickering M, Nauen D, Ho CY, Wen Z, Christian KM, Shi PY, Maher BJ, Wu H, Jin P, Tang H, Song H, Ming GL. 2016; Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell. 165:1238–1254. DOI: 10.1016/j.cell.2016.04.032. PMID: 27118425. PMCID: PMC4900885.
Article
43. Watanabe M, Buth JE, Vishlaghi N, de la Torre-Ubieta L, Taxidis J, Khakh BS, Coppola G, Pearson CA, Yamauchi K, Gong D, Dai X, Damoiseaux R, Aliyari R, Liebscher S, Schenke-Layland K, Caneda C, Huang EJ, Zhang Y, Cheng G, Geschwind DH, Golshani P, Sun R, Novitch BG. 2017; Self-organized cerebral organoids with human-specific features predict effective drugs to combat Zika virus infection. Cell Rep. 21:517–532. DOI: 10.1016/j.celrep.2017.09.047. PMID: 29020636. PMCID: PMC5637483.
Article
44. Xiang Y, Tanaka Y, Patterson B, Kang YJ, Govindaiah G, Roselaar N, Cakir B, Kim KY, Lombroso AP, Hwang SM, Zhong M, Stanley EG, Elefanty AG, Naegele JR, Lee SH, Weissman SM, Park IH. 2017; Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell. 21:383–398.e7. DOI: 10.1016/j.stem.2017.07.007. PMID: 28757360. PMCID: PMC5720381.
Article
45. Birey F, Andersen J, Makinson CD, Islam S, Wei W, Huber N, Fan HC, Metzler KRC, Panagiotakos G, Thom N, O'Rourke NA, Steinmetz LM, Bernstein JA, Hallmayer J, Huguenard JR, Paşca SP. 2017; Assembly of functionally integrated human forebrain spheroids. Nature. 545:54–59. DOI: 10.1038/nature22330. PMID: 28445465. PMCID: PMC5805137.
Article
46. Qian X, Su Y, Adam CD, Deutschmann AU, Pather SR, Goldberg EM, Su K, Li S, Lu L, Jacob F, Nguyen PTT, Huh S, Hoke A, Swinford-Jackson SE, Wen Z, Gu X, Pierce RC, Wu H, Briand LA, Chen HI, Wolf JA, Song H, Ming GL. 2020; Sliced human cortical organoids for modeling distinct cortical layer formation. Cell Stem Cell. 26:766–781.e9. DOI: 10.1016/j.stem.2020.02.002. PMID: 32142682. PMCID: PMC7366517.
Article
47. Sloan SA, Darmanis S, Huber N, Khan TA, Birey F, Caneda C, Reimer R, Quake SR, Barres BA, Paşca SP. 2017; Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. Neuron. 95:779–790.e6. DOI: 10.1016/j.neuron.2017.07.035. PMID: 28817799. PMCID: PMC5890820.
Article
48. Trujillo CA, Gao R, Negraes PD, Gu J, Buchanan J, Preissl S, Wang A, Wu W, Haddad GG, Chaim IA, Domissy A, Vandenberghe M, Devor A, Yeo GW, Voytek B, Muotri AR. 2019; Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell. 25:558–569.e7. DOI: 10.1016/j.stem.2019.08.002. PMID: 31474560. PMCID: PMC6778040.
Article
49. Bagley JA, Reumann D, Bian S, Lévi-Strauss J, Knoblich JA. 2017; Fused cerebral organoids model interactions between brain regions. Nat Methods. 14:743–751. DOI: 10.1038/nmeth.4304. PMID: 28504681. PMCID: PMC5540177.
Article
50. Sakaguchi H, Kadoshima T, Soen M, Narii N, Ishida Y, Ohgushi M, Takahashi J, Eiraku M, Sasai Y. 2015; Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nat Commun. 6:8896. DOI: 10.1038/ncomms9896. PMID: 26573335. PMCID: PMC4660208.
Article
51. Jacob F, Pather SR, Huang WK, Zhang F, Wong SZH, Zhou H, Cubitt B, Fan W, Chen CZ, Xu M, Pradhan M, Zhang DY, Zheng W, Bang AG, Song H, Carlos de la Torre J, Ming GL. 2020; Human pluripotent stem cell-derived neural cells and brain organoids reveal SARS-CoV-2 neurotropism predominates in choroid plexus epithelium. Cell Stem Cell. 27:937–950.e9. DOI: 10.1016/j.stem.2020.09.016. PMID: 33010822. PMCID: PMC7505550.
Article
52. Pomeshchik Y, Klementieva O, Gil J, Martinsson I, Hansen MG, de Vries T, Sancho-Balsells A, Russ K, Savchenko E, Collin A, Vaz AR, Bagnoli S, Nacmias B, Rampon C, Sorbi S, Brites D, Marko-Varga G, Kokaia Z, Rezeli M, Gouras GK, Roybon L. 2020; Human iPSC-derived hippocampal spheroids: an innovative tool for stratifying Alzheimer disease patient-specific cellular phenotypes and developing therapies. Stem Cell Reports. 15:256–273. Erratum in: Stem Cell Reports 2021;16:2838. DOI: 10.1016/j.stemcr.2021.10.003. PMID: 34758331. PMCID: PMC8581187.
Article
53. Xiang Y, Tanaka Y, Cakir B, Patterson B, Kim KY, Sun P, Kang YJ, Zhong M, Liu X, Patra P, Lee SH, Weissman SM, Park IH. 2019; hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids. Cell Stem Cell. 24:487–497.e7. DOI: 10.1016/j.stem.2018.12.015. PMID: 30799279. PMCID: PMC6853597.
Article
54. Ozone C, Suga H, Eiraku M, Kadoshima T, Yonemura S, Takata N, Oiso Y, Tsuji T, Sasai Y. 2016; Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells. Nat Commun. 7:10351. DOI: 10.1038/ncomms10351. PMID: 26762480. PMCID: PMC4735598. PMID: 35be4cc4f7da4d0f83b9432016c75e6d.
Article
55. Huang WK, Wong SZH, Pather SR, Nguyen PTT, Zhang F, Zhang DY, Zhang Z, Lu L, Fang W, Chen L, Fernandes A, Su Y, Song H, Ming GL. 2021; Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells. Cell Stem Cell. 28:1657–1670.e10. DOI: 10.1016/j.stem.2021.04.006. PMID: 33961804. PMCID: PMC8419002.
Article
56. Pellegrini L, Bonfio C, Chadwick J, Begum F, Skehel M, Lancaster MA. 2020; Human CNS barrier-forming organoids with cerebrospinal fluid production. Science. 369:eaaz5626. DOI: 10.1126/science.aaz5626. PMID: 32527923. PMCID: PMC7116154.
Article
57. Jo J, Xiao Y, Sun AX, Cukuroglu E, Tran HD, Göke J, Tan ZY, Saw TY, Tan CP, Lokman H, Lee Y, Kim D, Ko HS, Kim SO, Park JH, Cho NJ, Hyde TM, Kleinman JE, Shin JH, Weinberger DR, Tan EK, Je HS, Ng HH. 2016; Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell. 19:248–257. DOI: 10.1016/j.stem.2016.07.005. PMID: 27476966. PMCID: PMC5510242.
Article
58. Tieng V, Stoppini L, Villy S, Fathi M, Dubois-Dauphin M, Krause KH. 2014; Engineering of midbrain organoids containing long-lived dopaminergic neurons. Stem Cells Dev. 23:1535–1547. DOI: 10.1089/scd.2013.0442. PMID: 24576173.
Article
59. Nickels SL, Modamio J, Mendes-Pinheiro B, Monzel AS, Betsou F, Schwamborn JC. 2020; Reproducible generation of human midbrain organoids for in vitro modeling of Parkinson's disease. Stem Cell Res. 46:101870. DOI: 10.1016/j.scr.2020.101870. PMID: 32534166.
Article
60. Muguruma K, Nishiyama A, Kawakami H, Hashimoto K, Sasai Y. 2015; Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep. 10:537–550. DOI: 10.1016/j.celrep.2014.12.051. PMID: 25640179.
Article
61. Eura N, Matsui TK, Luginbühl J, Matsubayashi M, Nanaura H, Shiota T, Kinugawa K, Iguchi N, Kiriyama T, Zheng C, Kouno T, Lan YJ, Kongpracha P, Wiriyasermkul P, Sakaguchi YM, Nagata R, Komeda T, Morikawa N, Kitayoshi F, Jong M, Kobashigawa S, Nakanishi M, Hasegawa M, Saito Y, Shiromizu T, Nishimura Y, Kasai T, Takeda M, Kobayashi H, Inagaki Y, Tanaka Y, Makinodan M, Kishimoto T, Kuniyasu H, Nagamori S, Muotri AR, Shin JW, Sugie K, Mori E. 2020; Brainstem organoids from human pluripotent stem cells. Front Neurosci. 14:538. DOI: 10.3389/fnins.2020.00538. PMID: 32670003. PMCID: PMC7332712. PMID: df4e7359f1aa4a4388730a853f99d7c0.
Article
62. Yuan F, Fang KH, Hong Y, Xu SB, Xu M, Pan Y, Liu Y. 2020; LHX6 is essential for the migration of human pluripotent stem cell-derived GABAergic interneurons. Protein Cell. 11:286–291. DOI: 10.1007/s13238-019-00686-6. PMID: 31907793. PMCID: PMC7093371. PMID: 62db182191d5423ead7097ec0aef0f2a.
Article
63. Cakir B, Xiang Y, Tanaka Y, Kural MH, Parent M, Kang YJ, Chapeton K, Patterson B, Yuan Y, He CS, Raredon MSB, Dengelegi J, Kim KY, Sun P, Zhong M, Lee S, Patra P, Hyder F, Niklason LE, Lee SH, Yoon YS, Park IH. 2019; Engineering of human brain organoids with a functional vascular-like system. Nat Methods. 16:1169–1175. DOI: 10.1038/s41592-019-0586-5. PMID: 31591580. PMCID: PMC6918722.
Article
64. Shi Y, Sun L, Wang M, Liu J, Zhong S, Li R, Li P, Guo L, Fang A, Chen R, Ge WP, Wu Q, Wang X. 2020; Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biol. 18:e3000705. DOI: 10.1371/journal.pbio.3000705. PMID: 32401820. PMCID: PMC7250475. PMID: 66f6d290c2f84ede886185d58cd7368f.
Article
65. Song L, Yuan X, Jones Z, Griffin K, Zhou Y, Ma T, Li Y. 2019; Assembly of human stem cell-derived cortical spheroids and vascular spheroids to model 3-D brain-like tissues. Sci Rep. 9:5977. DOI: 10.1038/s41598-019-42439-9. PMID: 30979929. PMCID: PMC6461701.
Article
66. Abud EM, Ramirez RN, Martinez ES, Healy LM, Nguyen CHH, Newman SA, Yeromin AV, Scarfone VM, Marsh SE, Fimbres C, Caraway CA, Fote GM, Madany AM, Agrawal A, Kayed R, Gylys KH, Cahalan MD, Cummings BJ, Antel JP, Mortazavi A, Carson MJ, Poon WW, Blurton-Jones M. 2017; iPSC-derived human microglia-like cells to study neurological diseases. Neuron. 94:278–293.e9. DOI: 10.1016/j.neuron.2017.03.042. PMID: 28426964. PMCID: PMC5482419.
Article
67. Cederquist GY, Asciolla JJ, Tchieu J, Walsh RM, Cornacchia D, Resh MD, Studer L. 2019; Specification of positional identity in forebrain organoids. Nat Biotechnol. 37:436–444. DOI: 10.1038/s41587-019-0085-3. PMID: 30936566. PMCID: PMC6447454.
Article
68. Li R, Sun L, Fang A, Li P, Wu Q, Wang X. 2017; Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease. Protein Cell. 8:823–833. DOI: 10.1007/s13238-017-0479-2. PMID: 29058117. PMCID: PMC5676597.
Article
69. Faheem M, Naseer MI, Rasool M, Chaudhary AG, Kumosani TA, Ilyas AM, Pushparaj P, Ahmed F, Algahtani HA, Al-Qahtani MH, Saleh Jamal H. 2015; Molecular genetics of human primary microcephaly: an overview. BMC Med Genomics. 8 Suppl 1:S4. DOI: 10.1186/1755-8794-8-S1-S4. PMID: 25951892. PMCID: PMC4315316.
Article
70. Mlakar J, Korva M, Tul N, Popović M, Poljšak-Prijatelj M, Mraz J, Kolenc M, Resman Rus K, Vesnaver Vipotnik T, Fabjan Vodušek V, Vizjak A, Pižem J, Petrovec M, Avšič Županc T. 2016; Zika virus associated with microcephaly. N Engl J Med. 374:951–958. DOI: 10.1056/NEJMoa1600651. PMID: 26862926.
Article
71. Yoon KJ, Song G, Qian X, Pan J, Xu D, Rho HS, Kim NS, Habela C, Zheng L, Jacob F, Zhang F, Lee EM, Huang WK, Ringeling FR, Vissers C, Li C, Yuan L, Kang K, Kim S, Yeo J, Cheng Y, Liu S, Wen Z, Qin CF, Wu Q, Christian KM, Tang H, Jin P, Xu Z, Qian J, Zhu H, Song H, Ming GL. 2017; Zika-virus-encoded NS2A disrupts mammalian cortical neurogenesis by degrading adherens junction proteins. Cell Stem Cell. 21:349–358.e6. DOI: 10.1016/j.stem.2017.07.014. PMID: 28826723. PMCID: PMC5600197.
Article
72. Thomas CA, Tejwani L, Trujillo CA, Negraes PD, Herai RH, Mesci P, Macia A, Crow YJ, Muotri AR. 2017; Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation. Cell Stem Cell. 21:319–331.e8. DOI: 10.1016/j.stem.2017.07.009. PMID: 28803918. PMCID: PMC5591075.
Article
73. Reiner O. 2013; LIS1 and DCX: implications for brain development and human disease in relation to microtubules. Scientifica (Cairo). 2013:393975. DOI: 10.1155/2013/393975. PMID: 24278775. PMCID: PMC3820303.
Article
74. Egan MJ, Tan K, Reck-Peterson SL. 2012; Lis1 is an initiation factor for dynein-driven organelle transport. J Cell Biol. 197:971–982. DOI: 10.1083/jcb.201112101. PMID: 22711696. PMCID: PMC3384415.
Article
75. Karzbrun E, Kshirsagar A, Cohen SR, Hanna JH, Reiner O. 2018; Human brain organoids on a chip reveal the physics of folding. Nat Phys. 14:515–522. DOI: 10.1038/s41567-018-0046-7. PMID: 29760764. PMCID: PMC5947782.
Article
76. Iefremova V, Manikakis G, Krefft O, Jabali A, Weynans K, Wilkens R, Marsoner F, Brändl B, Müller FJ, Koch P, Ladewig J. 2017; An organoid-based model of cortical development identifies non-cell-autonomous defects in Wnt signaling contributing to Miller-Dieker syndrome. Cell Rep. 19:50–59. DOI: 10.1016/j.celrep.2017.03.047. PMID: 28380362.
Article
77. Neul JL, Kaufmann WE, Glaze DG, Christodoulou J, Clarke AJ, Bahi-Buisson N, Leonard H, Bailey ME, Schanen NC, Zappella M, Renieri A, Huppke P, Percy AK. RettSearch Consortium. 2010; Rett syndrome: revised diagnostic criteria and nomenclature. Ann Neurol. 68:944–950. DOI: 10.1002/ana.22124. PMID: 21154482. PMCID: PMC3058521.
Article
78. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. 1999; Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 23:185–188. DOI: 10.1038/13810. PMID: 10508514.
Article
79. Lyst MJ, Bird A. 2015; Rett syndrome: a complex disorder with simple roots. Nat Rev Genet. 16:261–275. DOI: 10.1038/nrg3897. PMID: 25732612.
Article
80. Xiang Y, Tanaka Y, Patterson B, Hwang SM, Hysolli E, Cakir B, Kim KY, Wang W, Kang YJ, Clement EM, Zhong M, Lee SH, Cho YS, Patra P, Sullivan GJ, Weissman SM, Park IH. 2020; Dysregulation of BRD4 function underlies the functional abnormalities of MeCP2 mutant neurons. Mol Cell. 79:84–98.e9. DOI: 10.1016/j.molcel.2020.05.016. PMID: 32526163. PMCID: PMC7375197.
Article
81. Brandon NJ, Sawa A. 2011; Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nat Rev Neurosci. 12:707–722. DOI: 10.1038/nrn3120. PMID: 22095064. PMCID: PMC3954824.
Article
82. Ye F, Kang E, Yu C, Qian X, Jacob F, Yu C, Mao M, Poon RYC, Kim J, Song H, Ming GL, Zhang M. 2017; DISC1 regulates neurogenesis via modulating kinetochore attachment of Ndel1/Nde1 during mitosis. Neuron. 96:1041–1054.e5. Erratum in: Neuron 2017;96:1204. DOI: 10.1016/j.neuron.2017.10.010. PMID: 29103808. PMCID: PMC5731645.
Article
83. Chiang CH, Su Y, Wen Z, Yoritomo N, Ross CA, Margolis RL, Song H, Ming GL. 2011; Integration-free induced pluripotent stem cells derived from schizophrenia patients with a DISC1 mutation. Mol Psychiatry. 16:358–360. DOI: 10.1038/mp.2011.13. PMID: 21339753. PMCID: PMC4005725.
Article
84. Burdick KE, Kamiya A, Hodgkinson CA, Lencz T, DeRosse P, Ishizuka K, Elashvili S, Arai H, Goldman D, Sawa A, Malhotra AK. 2008; Elucidating the relationship between DISC1, NDEL1 and NDE1 and the risk for schizophrenia: evidence of epistasis and competitive binding. Hum Mol Genet. 17:2462–2473. DOI: 10.1093/hmg/ddn146. PMID: 18469341. PMCID: PMC2486442.
Article
85. Sztainberg Y, Zoghbi HY. 2016; Lessons learned from studying syndromic autism spectrum disorders. Nat Neurosci. 19:1408–1417. DOI: 10.1038/nn.4420. PMID: 27786181.
Article
86. Madhavan M, Nevin ZS, Shick HE, Garrison E, Clarkson-Paredes C, Karl M, Clayton BLL, Factor DC, Allan KC, Barbar L, Jain T, Douvaras P, Fossati V, Miller RH, Tesar PJ. 2018; Induction of myelinating oligodendrocytes in human cortical spheroids. Nat Methods. 15:700–706. DOI: 10.1038/s41592-018-0081-4. PMID: 30046099. PMCID: PMC6508550.
Article
87. Crino PB, Nathanson KL, Henske EP. 2006; The tuberous sclerosis complex. N Engl J Med. 355:1345–1356. DOI: 10.1056/NEJMra055323. PMID: 17005952.
Article
88. Blair JD, Hockemeyer D, Bateup HS. 2018; Genetically engineered human cortical spheroid models of tuberous sclerosis. Nat Med. 24:1568–1578. DOI: 10.1038/s41591-018-0139-y. PMID: 30127391. PMCID: PMC6261470.
Article
89. Zhang B, He Y, Xu Y, Mo F, Mi T, Shen QS, Li C, Li Y, Liu J, Wu Y, Chen G, Zhu W, Qin C, Hu B, Zhou G. 2018; Differential antiviral immunity to Japanese encephalitis virus in developing cortical organoids. Cell Death Dis. 9:719. DOI: 10.1038/s41419-018-0763-y. PMID: 29915260. PMCID: PMC6006338.
Article
90. Fang Q, George AS, Brinkmeier ML, Mortensen AH, Gergics P, Cheung LY, Daly AZ, Ajmal A, Pérez Millán MI, Ozel AB, Kitzman JO, Mills RE, Li JZ, Camper SA. 2016; Genetics of combined pituitary hormone deficiency: roadmap into the genome era. Endocr Rev. 37:636–675. DOI: 10.1210/er.2016-1101. PMID: 27828722. PMCID: PMC5155665.
Article
91. Chatelain G, Fossat N, Brun G, Lamonerie T. 2006; Molecular dissection reveals decreased activity and not dominant negative effect in human OTX2 mutants. J Mol Med (Berl). 84:604–615. DOI: 10.1007/s00109-006-0048-2. PMID: 16607563.
Article
92. Acampora D, Mazan S, Lallemand Y, Avantaggiato V, Maury M, Simeone A, Brûlet P. 1995; Forebrain and midbrain regions are deleted in Otx2-/-mutants due to a defective anterior neuroectoderm specification during gastrulation. Development. 121:3279–3290. DOI: 10.1242/dev.121.10.3279. PMID: 7588062.
Article
93. Elliott J, Maltby EL, Reynolds B. 1993; A case of deletion 14(q22.1-->q22.3) associated with anophthalmia and pituitary abnormalities. J Med Genet. 30:251–252. DOI: 10.1136/jmg.30.3.251. PMID: 7682620. PMCID: PMC1016311.
Article
94. Mortensen AH, Schade V, Lamonerie T, Camper SA. 2015; Deletion of OTX2 in neural ectoderm delays anterior pituitary development. Hum Mol Genet. 24:939–953. DOI: 10.1093/hmg/ddu506. PMID: 25315894. PMCID: PMC4834879.
Article
95. Matsumoto R, Suga H, Aoi T, Bando H, Fukuoka H, Iguchi G, Narumi S, Hasegawa T, Muguruma K, Ogawa W, Takahashi Y. 2020; Congenital pituitary hypoplasia model demonstrates hypothalamic OTX2 regulation of pituitary progenitor cells. J Clin Invest. 130:641–654. DOI: 10.1172/JCI127378. PMID: 31845906. PMCID: PMC6994153.
Article
96. Ballabio C, Anderle M, Gianesello M, Lago C, Miele E, Cardano M, Aiello G, Piazza S, Caron D, Gianno F, Ciolfi A, Pedace L, Mastronuzzi A, Tartaglia M, Locatelli F, Ferretti E, Giangaspero F, Tiberi L. 2020; Modeling medulloblastoma in vivo and with human cerebellar organoids. Nat Commun. 11:583. DOI: 10.1038/s41467-019-13989-3. PMID: 31996670. PMCID: PMC6989674. PMID: 9519a8f838f84cd89a2a82dbc13a35e4.
Article
97. Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz PJ, Joseph RM, Condouris K, Tager-Flusberg H, Priori SG, Sanguinetti MC, Keating MT. 2004; Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell. 119:19–31. DOI: 10.1016/j.cell.2004.09.011. PMID: 15454078.
Article
98. Kalsner L, Chamberlain SJ. 2015; Prader-Willi, Angelman, and 15q11-q13 duplication syndromes. Pediatr Clin North Am. 62:587–606. DOI: 10.1016/j.pcl.2015.03.004. PMID: 26022164. PMCID: PMC4449422.
Article
99. Angulo MA, Butler MG, Cataletto ME. 2015; Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J Endocrinol Invest. 38:1249–1263. DOI: 10.1007/s40618-015-0312-9. PMID: 26062517. PMCID: PMC4630255.
Article
100. Tauber M, Hoybye C. 2021; Endocrine disorders in Prader-Willi syndrome: a model to understand and treat hypothalamic dysfunction. Lancet Diabetes Endocrinol. 9:235–246. DOI: 10.1016/S2213-8587(21)00002-4. PMID: 33647242.
Article
101. Raja WK, Mungenast AE, Lin YT, Ko T, Abdurrob F, Seo J, Tsai LH. 2016; Self-organizing 3D human neural tissue derived from induced pluripotent stem cells recapitulate Alzheimer's disease phenotypes. PLoS One. 11:e0161969. DOI: 10.1371/journal.pone.0161969. PMID: 27622770. PMCID: PMC5021368.
Article
102. Yan Y, Song L, Bejoy J, Zhao J, Kanekiyo T, Bu G, Zhou Y, Li Y. 2018; Modeling neurodegenerative microenvironment using cortical organoids derived from human stem cells. Tissue Eng Part A. 24:1125–1137. DOI: 10.1089/ten.tea.2017.0423. PMID: 29361890. PMCID: PMC6033307.
Article
103. Kim H, Park HJ, Choi H, Chang Y, Park H, Shin J, Kim J, Lengner CJ, Lee YK, Kim J. 2019; Modeling G2019S-LRRK2 sporadic Parkinson's disease in 3D midbrain organoids. Stem Cell Reports. 12:518–531. DOI: 10.1016/j.stemcr.2019.01.020. PMID: 30799274. PMCID: PMC6410341.
Article
104. Smits LM, Reinhardt L, Reinhardt P, Glatza M, Monzel AS, Stanslowsky N, Rosato-Siri MD, Zanon A, Antony PM, Bellmann J, Nicklas SM, Hemmer K, Qing X, Berger E, Kalmbach N, Ehrlich M, Bolognin S, Hicks AA, Wegner F, Sterneckert JL, Schwamborn JC. 2019; Modeling Parkinson's disease in midbrain-like organoids. NPJ Parkinsons Dis. 5:5. DOI: 10.1038/s41531-019-0078-4. PMID: 30963107. PMCID: PMC6450999.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr