Int J Stem Cells.  2022 Feb;15(1):14-25. 10.15283/ijsc22008.

Direct Conversion to Achieve Glial Cell Fates: Oligodendrocytes and Schwann Cells

Affiliations
  • 1Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
  • 2Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
  • 3Department of Pathology, College of Medicine, Kyung Hee University, Seoul, Korea
  • 4Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
  • 5The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Abstract

Glia have been known for its pivotal roles in physiological and pathological conditions in the nervous system. To study glial biology, multiple approaches have been applied to utilize glial cells for research, including stem cell-based technologies. Human glial cells differentiated from pluripotent stem cells are now available, allowing us to study the structural and functional roles of glia in the nervous system, although the efficiency is still low. Direct conversion is an advanced strategy governing fate conversion of diverse cell types directly into the desired lineage. This novel strategy stands as a promising approach for preliminary research and regenerative medicine. Direct conversion employs genetic and environmental cues to change cell fate to that with the required functional cell properties while retaining maturity-related molecular features. As an alternative method, it is now possible to obtain a variety of mature cell populations that could not be obtained using conventional differentiation methods. This review summarizes current achievements in obtaining glia, particularly oligodendrocytes and Schwann cells.

Keyword

Direct conversion; Differentiation; Oligodendrocyte; Schwann cell; Disease modeling

Cited by  2 articles

Lo and Behold, the Lab-Grown Organs Have Arrived!
Jaesang Kim
Int J Stem Cells. 2022;15(1):1-2.    doi: 10.15283/ijsc22026.

Peripheral Neuron-Organoid Interaction Induces Colonic Epithelial Differentiation via Non-Synaptic Substance P Secretion
Young Hyun Che, In Young Choi, Chan Eui Song, Chulsoon Park, Seung Kwon Lim, Jeong Hee Kim, Su Haeng Sung, Jae Hoon Park, Sun Lee, Yong Jun Kim
Int J Stem Cells. 2023;16(3):269-280.    doi: 10.15283/ijsc23026.


Reference

References

1. von Bartheld CS. 2018; Myths and truths about the cellular composition of the human brain: a review of influential concepts. J Chem Neuroanat. 93:2–15. DOI: 10.1016/j.jchemneu.2017.08.004. PMID: 28873338. PMCID: PMC5834348.
Article
2. Verkhratsky A, Orkand RK, Kettenmann H. 1998; Glial calcium: homeostasis and signaling function. Physiol Rev. 78:99–141. DOI: 10.1152/physrev.1998.78.1.99. PMID: 9457170.
Article
3. Bennett ML, Viaene AN. 2021; What are activated and reactive glia and what is their role in neurodegeneration? Neurobiol Dis. 148:105172. DOI: 10.1016/j.nbd.2020.105172. PMID: 33171230.
Article
4. Kettenmann H, Ransom BR. 2013. Neuroglia. 3rd ed. Oxford University Press;New York: p. 930.
5. Hu BY, Du ZW, Li XJ, Ayala M, Zhang SC. 2009; Human oligodendrocytes from embryonic stem cells: conserved SHH signaling networks and divergent FGF effects. Development. 136:1443–1452. DOI: 10.1242/dev.029447. PMID: 19363151. PMCID: PMC2674255.
Article
6. Shaltouki A, Peng J, Liu Q, Rao MS, Zeng X. 2013; Efficient generation of astrocytes from human pluripotent stem cells in defined conditions. Stem Cells. 31:941–952. DOI: 10.1002/stem.1334. PMID: 23341249.
Article
7. Mukherjee-Clavin B, Mi R, Kern B, Choi IY, Lim H, Oh Y, Lannon B, Kim KJ, Bell S, Hur JK, Hwang W, Che YH, Habib O, Baloh RH, Eggan K, Brandacher G, Hoke A, Studer L, Kim YJ, Lee G. 2019; Comparison of three congruent patient-specific cell types for the modelling of a human genetic Schwann-cell disorder. Nat Biomed Eng. 3:571–582. DOI: 10.1038/s41551-019-0381-8. PMID: 30962586. PMCID: PMC6612317.
Article
8. Lenroot RK, Giedd JN. 2006; Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev. 30:718–729. DOI: 10.1016/j.neubiorev.2006.06.001. PMID: 16887188.
Article
9. Jakovcevski I, Filipovic R, Mo Z, Rakic S, Zecevic N. 2009; Oligodendrocyte development and the onset of myelination in the human fetal brain. Front Neuroanat. 3:5. DOI: 10.3389/neuro.05.005.2009. PMID: 19521542. PMCID: PMC2694674.
Article
10. Shearman JD, Franks AJ. 1987; S-100 protein in Schwann cells of the developing human peripheral nerve. An immunohistochemical study. Cell Tissue Res. 249:459–463. DOI: 10.1007/BF00215531. PMID: 3304651.
11. Tau GZ, Peterson BS. 2010; Normal development of brain circuits. Neuropsychopharmacology. 35:147–168. DOI: 10.1038/npp.2009.115. PMID: 19794405. PMCID: PMC3055433.
Article
12. Lanjewar SN, Sloan SA. 2021; Growing glia: cultivating human stem cell models of gliogenesis in health and disease. Front Cell Dev Biol. 9:649538. DOI: 10.3389/fcell.2021.649538. PMID: 33842475. PMCID: PMC8027322. PMID: a8c2c6bd5454423ca8ec1b9a631c559a.
Article
13. Imaizumi Y, Okano H. 2014; Modeling human neurological disorders with induced pluripotent stem cells. J Neurochem. 129:388–399. DOI: 10.1111/jnc.12625. PMID: 24286589.
Article
14. Horisawa K, Suzuki A. 2020; Direct cell-fate conversion of somatic cells: toward regenerative medicine and industries. Proc Jpn Acad Ser B Phys Biol Sci. 96:131–158. DOI: 10.2183/pjab.96.012. PMID: 32281550. PMCID: PMC7247973.
Article
15. Mitchell R, Szabo E, Shapovalova Z, Aslostovar L, Makondo K, Bhatia M. 2014; Molecular evidence for OCT4-induced plasticity in adult human fibroblasts required for direct cell fate conversion to lineage specific progenitors. Stem Cells. 32:2178–2187. DOI: 10.1002/stem.1721. PMID: 24740884.
Article
16. Kim YJ, Lim H, Li Z, Oh Y, Kovlyagina I, Choi IY, Dong X, Lee G. 2014; Generation of multipotent induced neural crest by direct reprogramming of human postnatal fibroblasts with a single transcription factor. Cell Stem Cell. 15:497–506. DOI: 10.1016/j.stem.2014.07.013. PMID: 25158936.
Article
17. Chang Y, Cho B, Kim S, Kim J. 2019; Direct conversion of fibroblasts to osteoblasts as a novel strategy for bone regeneration in elderly individuals. Exp Mol Med. 51:1–8. DOI: 10.1038/s12276-019-0251-1. PMCID: PMC6509166. PMID: 31073120. PMID: 88a0c45582454df69d1e1b5b041dabff.
Article
18. Carlson BM. 2019. The human body: linking structure and function. Elsevier/Academic Press;London: p. 55.
19. Jessen KR. 2004; Glial cells. Int J Biochem Cell Biol. 36:1861–1867. DOI: 10.1016/j.biocel.2004.02.023. PMID: 15203098.
Article
20. Jäkel S, Dimou L. 2017; Glial cells and their function in the adult brain: a journey through the history of their ablation. Front Cell Neurosci. 11:24. DOI: 10.3389/fncel.2017.00024. PMID: 28243193. PMCID: PMC5303749.
Article
21. Jessen KR, Mirsky R. 2005; The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci. 6:671–682. DOI: 10.1038/nrn1746. PMID: 16136171.
Article
22. Kurosinski P, Götz J. 2002; Glial cells under physiologic and pathologic conditions. Arch Neurol. 59:1524–1528. DOI: 10.1001/archneur.59.10.1524. PMID: 12374489.
Article
23. Greenhalgh AD, David S, Bennett FC. 2020; Immune cell regulation of glia during CNS injury and disease. Nat Rev Neurosci. 21:139–152. DOI: 10.1038/s41583-020-0263-9. PMID: 32042145.
Article
24. Sakka L, Coll G, Chazal J. 2011; Anatomy and physiology of cerebrospinal fluid. Eur Ann Otorhinolaryngol Head Neck Dis. 128:309–316. DOI: 10.1016/j.anorl.2011.03.002. PMID: 22100360.
Article
25. Visser VL, Rusinek H, Weickenmeier J. 2021; Peak ependymal cell stretch overlaps with the onset locations of periventricular white matter lesions. Sci Rep. 11:21956. DOI: 10.1038/s41598-021-00610-1. PMID: 34753951. PMCID: PMC8578319. PMID: 7f3b023c45314104970af1d8861fdff1.
Article
26. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisén J. 1999; Identification of a neural stem cell in the adult mammalian central nervous system. Cell. 96:25–34. DOI: 10.1016/S0092-8674(00)80956-3.
Article
27. Carlén M, Meletis K, Göritz C, Darsalia V, Evergren E, Tanigaki K, Amendola M, Barnabé-Heider F, Yeung MS, Naldini L, Honjo T, Kokaia Z, Shupliakov O, Cassidy RM, Lindvall O, Frisén J. 2009; Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nat Neurosci. 12:259–267. DOI: 10.1038/nn.2268. PMID: 19234458.
Article
28. Wei D, Levic S, Nie L, Gao WQ, Petit C, Jones EG, Yamoah EN. 2008; Cells of adult brain germinal zone have properties akin to hair cells and can be used to replace inner ear sensory cells after damage. Proc Natl Acad Sci U S A. 105:21000–21005. DOI: 10.1073/pnas.0808044105. PMID: 19064919. PMCID: PMC2634930.
Article
29. Salzer JL, Zalc B. 2016; Myelination. Curr Biol. 26:R971–R975. DOI: 10.1016/j.cub.2016.07.074. PMID: 27780071. PMCID: PMC8445327.
Article
30. Bolívar S, Navarro X, Udina E. 2020; Schwann cell role in selectivity of nerve regeneration. Cells. 9:2131. DOI: 10.3390/cells9092131. PMID: 32962230. PMCID: PMC7563640. PMID: 8fb2b6d4eb2b427aa1cf6a2e63f0431d.
Article
31. Love S. 2006; Demyelinating diseases. J Clin Pathol. 59:1151–1159. DOI: 10.1136/jcp.2005.031195. PMID: 17071802. PMCID: PMC1860500.
Article
32. Höftberger R, Guo Y, Flanagan EP, Lopez-Chiriboga AS, Endmayr V, Hochmeister S, Joldic D, Pittock SJ, Tillema JM, Gorman M, Lassmann H, Lucchinetti CF. 2020; The pathology of central nervous system inflammatory demyelinating disease accompanying myelin oligodendrocyte glycoprotein autoantibody. Acta Neuropathol. 139:875–892. DOI: 10.1007/s00401-020-02132-y. PMID: 32048003. PMCID: PMC7181560.
Article
33. Park HT, Kim YH, Lee KE, Kim JK. 2020; Behind the pathology of macrophage-associated demyelination in inflammatory neuropathies: demyelinating Schwann cells. Cell Mol Life Sci. 77:2497–2506. DOI: 10.1007/s00018-019-03431-8. PMID: 31884566. PMCID: PMC7320037.
Article
34. Ydens E, Lornet G, Smits V, Goethals S, Timmerman V, Janssens S. 2013; The neuroinflammatory role of Schwann cells in disease. Neurobiol Dis. 55:95–103. DOI: 10.1016/j.nbd.2013.03.005. PMID: 23523637.
Article
35. Peferoen L, Kipp M, van der Valk P, van Noort JM, Amor S. 2014; Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology. 141:302–313. DOI: 10.1111/imm.12163. PMID: 23981039. PMCID: PMC3930369.
Article
36. van Tilborg E, de Theije CGM, van Hal M, Wagenaar N, de Vries LS, Benders MJ, Rowitch DH, Nijboer CH. 2018; Origin and dynamics of oligodendrocytes in the developing brain: implications for perinatal white matter injury. Glia. 66:221–238. DOI: 10.1002/glia.23256. PMID: 29134703. PMCID: PMC5765410.
Article
37. Najm FJ, Zaremba A, Caprariello AV, Nayak S, Freundt EC, Scacheri PC, Miller RH, Tesar PJ. 2011; Rapid and robust generation of functional oligodendrocyte progenitor cells from epiblast stem cells. Nat Methods. 8:957–962. DOI: 10.1038/nmeth.1712. PMID: 21946668. PMCID: PMC3400969.
Article
38. Wang S, Bates J, Li X, Schanz S, Chandler-Militello D, Levine C, Maherali N, Studer L, Hochedlinger K, Windrem M, Goldman SA. 2013; Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell. 12:252–264. DOI: 10.1016/j.stem.2012.12.002. PMID: 23395447. PMCID: PMC3700553.
Article
39. Stacpoole SR, Spitzer S, Bilican B, Compston A, Karadottir R, Chandran S, Franklin RJ. 2013; High yields of oligodendrocyte lineage cells from human embryonic stem cells at physiological oxygen tensions for evaluation of translational biology. Stem Cell Reports. 1:437–450. DOI: 10.1016/j.stemcr.2013.09.006. PMID: 24286031. PMCID: PMC3841262.
Article
40. Piao J, Major T, Auyeung G, Policarpio E, Menon J, Droms L, Gutin P, Uryu K, Tchieu J, Soulet D, Tabar V. 2015; Human embryonic stem cell-derived oligodendrocyte progenitors remyelinate the brain and rescue behavioral deficits following radiation. Cell Stem Cell. 16:198–210. DOI: 10.1016/j.stem.2015.01.004. PMID: 25658373. PMCID: PMC4425211.
Article
41. Yun W, Hong W, Son D, Liu HW, Kim SS, Park M, Kim IY, Kim DS, Song G, You S. 2019; Generation of anterior hindbrain-specific, glial-restricted progenitor-like cells from human pluripotent stem cells. Stem Cells Dev. 28:633–648. DOI: 10.1089/scd.2019.0033. PMID: 30880587.
Article
42. Douvaras P, Fossati V. 2015; Generation and isolation of oligodendrocyte progenitor cells from human pluripotent stem cells. Nat Protoc. 10:1143–1154. DOI: 10.1038/nprot.2015.075. PMID: 26134954.
Article
43. Douvaras P, Wang J, Zimmer M, Hanchuk S, O'Bara MA, Sadiq S, Sim FJ, Goldman J, Fossati V. 2014; Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells. Stem Cell Reports. 3:250–259. DOI: 10.1016/j.stemcr.2014.06.012. PMID: 25254339. PMCID: PMC4176529.
Article
44. Yamashita T, Miyamoto Y, Bando Y, Ono T, Kobayashi S, Doi A, Araki T, Kato Y, Shirakawa T, Suzuki Y, Yamauchi J, Yoshida S, Sato N. 2017; Differentiation of oligodendrocyte progenitor cells from dissociated monolayer and feeder-free cultured pluripotent stem cells. PLoS One. 12:e0171947. DOI: 10.1371/journal.pone.0171947. PMID: 28192470. PMCID: PMC5305255.
Article
45. Kim DS, Jung SJ, Lee JS, Lim BY, Kim HA, Yoo JE, Kim DW, Leem JW. 2017; Rapid generation of OPC-like cells from human pluripotent stem cells for treating spinal cord injury. Exp Mol Med. 49:e361. DOI: 10.1038/emm.2017.106. PMID: 28751784. PMCID: PMC5565952.
Article
46. Ehrlich M, Mozafari S, Glatza M, Starost L, Velychko S, Hallmann AL, Cui QL, Schambach A, Kim KP, Bachelin C, Marteyn A, Hargus G, Johnson RM, Antel J, Sterneckert J, Zaehres H, Schöler HR, Baron-Van Evercooren A, Kuhlmann T. 2017; Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proc Natl Acad Sci U S A. 114:E2243–E2252. DOI: 10.1073/pnas.1614412114. PMID: 28246330. PMCID: PMC5358375.
Article
47. García-León JA, Kumar M, Boon R, Chau D, One J, Wolfs E, Eggermont K, Berckmans P, Gunhanlar N, de Vrij F, Lendemeijer B, Pavie B, Corthout N, Kushner SA, Dávila JC, Lambrichts I, Hu WS, Verfaillie CM. 2018; SOX10 single transcription factor-based fast and efficient generation of oligodendrocytes from human pluripotent stem cells. Stem Cell Reports. 10:655–672. DOI: 10.1016/j.stemcr.2017.12.014. PMID: 29337119. PMCID: PMC5830935.
Article
48. Wang J, Pol SU, Haberman AK, Wang C, O'Bara MA, Sim FJ. 2014; Transcription factor induction of human oligodendrocyte progenitor fate and differentiation. Proc Natl Acad Sci U S A. 111:E2885–E2894. DOI: 10.1073/pnas.1408295111. PMID: 24982138. PMCID: PMC4104854.
Article
49. Schmitteckert S, Ziegler C, Rappold GA, Niesler B, Rolletschek A. 2020; Molecular characterization of embryonic stem cell-derived cardiac neural crest-like cells revealed a spatiotemporal expression of an Mlc-3 isoform. Int J Stem Cells. 13:65–79. DOI: 10.15283/ijsc19069. PMID: 31887845. PMCID: PMC7119212.
Article
50. Soldatov R, Kaucka M, Kastriti ME, Petersen J, Chontorotzea T, Englmaier L, Akkuratova N, Yang Y, Häring M, Dyachuk V, Bock C, Farlik M, Piacentino ML, Boismoreau F, Hilscher MM, Yokota C, Qian X, Nilsson M, Bronner ME, Croci L, Hsiao WY, Guertin DA, Brunet JF, Consalez GG, Ernfors P, Fried K, Kharchenko PV, Adameyko I. 2019; Spatiotemporal structure of cell fate decisions in murine neural crest. Science. 364:eaas9536. DOI: 10.1126/science.aas9536. PMID: 31171666.
Article
51. Wilson YM, Richards KL, Ford-Perriss ML, Panthier JJ, Murphy M. 2004; Neural crest cell lineage segregation in the mouse neural tube. Development. 131:6153–6162. DOI: 10.1242/dev.01533. PMID: 15548576.
Article
52. Achilleos A, Trainor PA. 2012; Neural crest stem cells: discovery, properties and potential for therapy. Cell Res. 22:288–304. DOI: 10.1038/cr.2012.11. PMID: 22231630. PMCID: PMC3271580.
Article
53. Le Douarin NM. 2004; The avian embryo as a model to study the development of the neural crest: a long and still ongoing story. Mech Dev. 121:1089–1102. DOI: 10.1016/j.mod.2004.06.003. PMID: 15296974.
Article
54. Lee G, Kim H, Elkabetz Y, Al Shamy G, Panagiotakos G, Barberi T, Tabar V, Studer L. 2007; Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol. 25:1468–1475. Erratum in: Nat Biotechnol 2008;26:831. DOI: 10.1038/nbt0708-831b. PMID: 18037878.
Article
55. Lee G, Chambers SM, Tomishima MJ, Studer L. 2010; Derivation of neural crest cells from human pluripotent stem cells. Nat Protoc. 5:688–701. DOI: 10.1038/nprot.2010.35. PMID: 20360764.
Article
56. Monje PV. 2020; Schwann cell cultures: biology, technology and therapeutics. Cells. 9:1848. DOI: 10.3390/cells9081848. PMID: 32781699. PMCID: PMC7465416. PMID: 5362b4f57eec439b9ae921100dede8ba.
Article
57. Huang CW, Huang WC, Qiu X, Fernandes Ferreira da Silva F, Wang A, Patel S, Nesti LJ, Poo MM, Li S. 2017; The differentiation stage of transplanted stem cells modulates nerve regeneration. Sci Rep. 7:17401. DOI: 10.1038/s41598-017-17043-4. PMID: 29234013. PMCID: PMC5727226.
Article
58. Kreitzer FR, Salomonis N, Sheehan A, Huang M, Park JS, Spindler MJ, Lizarraga P, Weiss WA, So PL, Conklin BR. 2013; A robust method to derive functional neural crest cells from human pluripotent stem cells. Am J Stem Cells. 2:119–131. PMID: 23862100. PMCID: PMC3708511.
59. Liu Q, Spusta SC, Mi R, Lassiter RN, Stark MR, Höke A, Rao MS, Zeng X. 2012; Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional schwann cells. Stem Cells Transl Med. 1:266–278. DOI: 10.5966/sctm.2011-0042. PMID: 23197806. PMCID: PMC3659695.
Article
60. Wang A, Tang Z, Park IH, Zhu Y, Patel S, Daley GQ, Li S. 2011; Induced pluripotent stem cells for neural tissue engineering. Biomaterials. 32:5023–5032. DOI: 10.1016/j.biomaterials.2011.03.070. PMID: 21514663. PMCID: PMC3100451.
Article
61. Ziegler L, Grigoryan S, Yang IH, Thakor NV, Goldstein RS. 2011; Efficient generation of schwann cells from human embryonic stem cell-derived neurospheres. Stem Cell Rev Rep. 7:394–403. DOI: 10.1007/s12015-010-9198-2. PMID: 21052870.
Article
62. Kim HS, Lee J, Lee DY, Kim YD, Kim JY, Lim HJ, Lim S, Cho YS. 2017; Schwann cell precursors from human pluripotent stem cells as a potential therapeutic target for myelin repair. Stem Cell Reports. 8:1714–1726. DOI: 10.1016/j.stemcr.2017.04.011. PMID: 28506533. PMCID: PMC5469943.
Article
63. Huang Z, Powell R, Phillips JB, Haastert-Talini K. 2020; Perspective on Schwann cells derived from induced pluripotent stem cells in peripheral nerve tissue engineering. Cells. 9:2497. DOI: 10.3390/cells9112497. PMID: 33213068. PMCID: PMC7698557. PMID: 49f0c2aaa0c34f428ccbe46731f9f025.
Article
64. Hopf A, Schaefer DJ, Kalbermatten DF, Guzman R, Madduri S. 2020; Schwann cell-like cells: origin and usability for repair and regeneration of the peripheral and central nervous system. Cells. 9:1990. DOI: 10.3390/cells9091990. PMID: 32872454. PMCID: PMC7565191. PMID: 9f07d3e07e1b4770908ca0d00edb2b02.
Article
65. Papp B, Plath K. 2013; Epigenetics of reprogramming to induced pluripotency. Cell. 152:1324–1343. DOI: 10.1016/j.cell.2013.02.043. PMID: 23498940. PMCID: PMC3602907.
Article
66. Guo G, von Meyenn F, Rostovskaya M, Clarke J, Dietmann S, Baker D, Sahakyan A, Myers S, Bertone P, Reik W, Plath K, Smith A. 2017; Epigenetic resetting of human pluripotency. Development. 144:2748–2763. Erratum in: Development 2018;145:dev166397. DOI: 10.1242/dev.146811. PMID: 28765214. PMCID: PMC5560041.
Article
67. Berdasco M, Esteller M. 2011; DNA methylation in stem cell renewal and multipotency. Stem Cell Res Ther. 2:42. DOI: 10.1186/scrt83. PMID: 22041459. PMCID: PMC3308039.
Article
68. Papp B, Plath K. 2011; Reprogramming to pluripotency: stepwise resetting of the epigenetic landscape. Cell Res. 21:486–501. DOI: 10.1038/cr.2011.28. PMID: 21321600. PMCID: PMC3193418.
Article
69. Wu H, Sun YE. 2006; Epigenetic regulation of stem cell differentiation. Pediatr Res. 59(4 Pt 2):21R–25R. DOI: 10.1203/01.pdr.0000203565.76028.2a. PMID: 16549544.
Article
70. Najm FJ, Lager AM, Zaremba A, Wyatt K, Caprariello AV, Factor DC, Karl RT, Maeda T, Miller RH, Tesar PJ. 2013; Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells. Nat Biotechnol. 31:426–433. DOI: 10.1038/nbt.2561. PMID: 23584611. PMCID: PMC3678540.
Article
71. Yang N, Zuchero JB, Ahlenius H, Marro S, Ng YH, Vierbuchen T, Hawkins JS, Geissler R, Barres BA, Wernig M. 2013; Generation of oligodendroglial cells by direct lineage conversion. Nat Biotechnol. 31:434–439. DOI: 10.1038/nbt.2564. PMID: 23584610. PMCID: PMC3677690.
Article
72. Kim JB, Lee H, Araúzo-Bravo MJ, Hwang K, Nam D, Park MR, Zaehres H, Park KI, Lee SJ. 2015; Oct4-induced oligodendrocyte progenitor cells enhance functional recovery in spinal cord injury model. EMBO J. 34:2971–2983. DOI: 10.15252/embj.201592652. PMID: 26497893. PMCID: PMC4687687.
Article
73. Mokhtarzadeh Khanghahi A, Satarian L, Deng W, Baharvand H, Javan M. 2018; In vivo conversion of astrocytes into oligodendrocyte lineage cells with transcription factor Sox10; promise for myelin repair in multiple sclerosis. PLoS One. 13:e0203785. DOI: 10.1371/journal.pone.0203785. PMID: 30212518. PMCID: PMC6136770.
Article
74. Farhangi S, Dehghan S, Totonchi M, Javan M. 2019; In vivo conversion of astrocytes to oligodendrocyte lineage cells in adult mice demyelinated brains by Sox2. Mult Scler Relat Disord. 28:263–272. DOI: 10.1016/j.msard.2018.12.041. PMID: 30639828.
Article
75. Liu C, Hu X, Li Y, Lu W, Li W, Cao N, Zhu S, Cheng J, Ding S, Zhang M. 2019; Conversion of mouse fibroblasts into oligodendrocyte progenitor-like cells through a chemical approach. J Mol Cell Biol. 11:489–495. DOI: 10.1093/jmcb/mjy088. PMID: 30629188. PMCID: PMC6604601.
Article
76. Weider M, Wegener A, Schmitt C, Küspert M, Hillgärtner S, Bösl MR, Hermans-Borgmeyer I, Nait-Oumesmar B, Wegner M. 2015; Elevated in vivo levels of a single transcription factor directly convert satellite glia into oligodendrocyte-like cells. PLoS Genet. 11:e1005008. DOI: 10.1371/journal.pgen.1005008. PMID: 25680202. PMCID: PMC4334169.
Article
77. Yun W, Choi KA, Hwang I, Zheng J, Park M, Hong W, Jang AY, Kim JH, Choi W, Kim DS, Kim IY, Kim YJ, Liu Y, Yoon BS, Park G, Song G, Hong S, You S. 2022; OCT4-induced oligodendrocyte progenitor cells promote remyelination and ameliorate disease. NPJ Regen Med. 7:4. DOI: 10.1038/s41536-021-00199-z. PMID: 35027563. PMCID: PMC8758684. PMID: 38e6a2349c0b4d4da6d467d01067452c.
Article
78. King HW, Klose RJ. 2017; The pioneer factor OCT4 requires the chromatin remodeller BRG1 to support gene regulatory element function in mouse embryonic stem cells. Elife. 6:e22631. DOI: 10.7554/eLife.22631. PMID: 28287392. PMCID: PMC5400504. PMID: 6f68c3cb6ca9483b84b78bff7d569de9.
Article
79. Soufi A, Garcia MF, Jaroszewicz A, Osman N, Pellegrini M, Zaret KS. 2015; Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell. 161:555–568. DOI: 10.1016/j.cell.2015.03.017. PMID: 25892221. PMCID: PMC4409934.
Article
80. Dehghan S, Hesaraki M, Soleimani M, Mirnajafi-Zadeh J, Fathollahi Y, Javan M. 2016; Oct4 transcription factor in conjunction with valproic acid accelerates myelin repair in demyelinated optic chiasm in mice. Neuroscience. 318:178–189. DOI: 10.1016/j.neuroscience.2016.01.028. PMID: 26804242.
Article
81. Matjusaitis M, Wagstaff LJ, Martella A, Baranowski B, Blin C, Gogolok S, Williams A, Pollard SM. 2019; Reprogramming of fibroblasts to oligodendrocyte progenitor-like cells using CRISPR/Cas9-based synthetic transcription factors. Stem Cell Reports. 13:1053–1067. DOI: 10.1016/j.stemcr.2019.10.010. PMID: 31708478. PMCID: PMC6915844.
Article
82. Sowa Y, Kishida T, Tomita K, Yamamoto K, Numajiri T, Mazda O. 2017; Direct conversion of human fibroblasts into Schwann cells that facilitate regeneration of injured peripheral nerve in vivo. Stem Cells Transl Med. 6:1207–1216. DOI: 10.1002/sctm.16-0122. PMID: 28186702. PMCID: PMC5442846.
Article
83. Mazzara PG, Massimino L, Pellegatta M, Ronchi G, Ricca A, Iannielli A, Giannelli SG, Cursi M, Cancellieri C, Sessa A, Del Carro U, Quattrini A, Geuna S, Gritti A, Taveggia C, Broccoli V. 2017; Two factor-based reprogramming of rodent and human fibroblasts into Schwann cells. Nat Commun. 8:14088. DOI: 10.1038/ncomms14088. PMID: 28169300. PMCID: PMC5309703. PMID: 3e5822abc9d6496093cbde7fb6236024.
Article
84. Jang SW, Svaren J. 2009; Induction of myelin protein zero by early growth response 2 through upstream and intragenic elements. J Biol Chem. 284:20111–20120. DOI: 10.1074/jbc.M109.022426. PMID: 19487693. PMCID: PMC2740437.
Article
85. LeBlanc SE, Ward RM, Svaren J. 2007; Neuropathy-associated Egr2 mutants disrupt cooperative activation of myelin protein zero by Egr2 and Sox10. Mol Cell Biol. 27:3521–3529. DOI: 10.1128/MCB.01689-06. PMID: 17325040. PMCID: PMC1899967.
Article
86. Kim HS, Kim JY, Song CL, Jeong JE, Cho YS. 2020; Directly induced human Schwann cell precursors as a valuable source of Schwann cells. Stem Cell Res Ther. 11:257. DOI: 10.1186/s13287-020-01772-x. PMID: 32586386. PMCID: PMC7318441. PMID: 23be3c67547a469481e546b8d9361de9.
Article
87. Nau MM, Brooks BJ, Battey J, Sausville E, Gazdar AF, Kirsch IR, McBride OW, Bertness V, Hollis GF, Minna JD. 1985; L-myc, a new myc-related gene amplified and expressed in human small cell lung cancer. Nature. 318:69–73. DOI: 10.1038/318069a0. PMID: 2997622.
Article
88. Peng S, Maihle NJ, Huang Y. 2010; Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer. Oncogene. 29:2153–2159. DOI: 10.1038/onc.2009.500. PMID: 20101213.
Article
89. Bass AJ, Watanabe H, Mermel CH, Yu S, Perner S, Verhaak RG, Kim SY, Wardwell L, Tamayo P, Gat-Viks I, Ramos AH, Woo MS, Weir BA, Getz G, Beroukhim R, O'Kelly M, Dutt A, Rozenblatt-Rosen O, Dziunycz P, Komisarof J, Chirieac LR, Lafargue CJ, Scheble V, Wilbertz T, Ma C, Rao S, Nakagawa H, Stairs DB, Lin L, Giordano TJ, Wagner P, Minna JD, Gazdar AF, Zhu CQ, Brose MS, Cecconello I, Ribeiro U Jr, Marie SK, Dahl O, Shivdasani RA, Tsao MS, Rubin MA, Wong KK, Regev A, Hahn WC, Beer DG, Rustgi AK, Meyerson M. 2009; SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet. 41:1238–1242. DOI: 10.1038/ng.465. PMID: 19801978. PMCID: PMC2783775.
Article
90. Kilmister EJ, Patel J, Bockett N, Chang-McDonald B, Sim D, Wickremesekera A, Davis PF, Tan ST. 2020; Embryonic stem cell-like subpopulations are present within Schwannoma. J Clin Neurosci. 81:201–209. DOI: 10.1016/j.jocn.2020.09.037. PMID: 33222917.
Article
91. Kristensen BW, Priesterbach-Ackley LP, Petersen JK, Wesseling P. 2019; Molecular pathology of tumors of the central nervous system. Ann Oncol. 30:1265–1278. DOI: 10.1093/annonc/mdz164. PMID: 31124566. PMCID: PMC6683853.
Article
92. Soussi T. 2000; The p53 tumor suppressor gene: from molecular biology to clinical investigation. Ann N Y Acad Sci. 910:121–137. discussion 137–139. DOI: 10.1111/j.1749-6632.2000.tb06705.x. PMID: 10911910.
Article
93. LeBleu VS, Neilson EG. 2020; Origin and functional heterogeneity of fibroblasts. FASEB J. 34:3519–3536. DOI: 10.1096/fj.201903188R. PMID: 32037627.
Article
94. Mateu R, Živicová V, Krejčí ED, Grim M, Strnad H, Vlček Č, Kolář M, Lacina L, Gál P, Borský J, Smetana K Jr, Dvořánková B. 2016; Functional differences between neonatal and adult fibroblasts and keratinocytes: donor age affects epithelial-mesenchymal crosstalk in vitro. Int J Mol Med. 38:1063–1074. DOI: 10.3892/ijmm.2016.2706. PMID: 27513730. PMCID: PMC5029973.
Article
95. Chipev CC, Simon M. 2002; Phenotypic differences between dermal fibroblasts from different body sites determine their responses to tension and TGFbeta1. BMC Dermatol. 2:13. DOI: 10.1186/1471-5945-2-13. PMID: 12445328. PMCID: PMC138803.
96. Thoma EC. 2018; Chemical conversion of human fibroblasts into functional Schwann cells. Methods Mol Biol. 1739:127–136. DOI: 10.1007/978-1-4939-7649-2_8. PMID: 29546704.
Article
97. Kitada M, Murakami T, Wakao S, Li G, Dezawa M. 2019; Direct conversion of adult human skin fibroblasts into functional Schwann cells that achieve robust recovery of the severed peripheral nerve in rats. Glia. 67:950–966. DOI: 10.1002/glia.23582. PMID: 30637802.
Article
98. Porciúncula LO, Goto-Silva L, Ledur PF, Rehen SK. 2021; The age of brain organoids: tailoring cell identity and functionality for normal brain development and disease modeling. Front Neurosci. 15:674563. DOI: 10.3389/fnins.2021.674563. PMID: 34483818. PMCID: PMC8414411. PMID: badb8df814d64c89ad2df94985ab6acb.
Article
99. Kim J, Sullivan GJ, Park IH. 2021; How well do brain organoids capture your brain? iScience. 24:102063. DOI: 10.1016/j.isci.2021.102063. PMID: 33554067. PMCID: PMC7856464.
Article
100. Marton RM, Miura Y, Sloan SA, Li Q, Revah O, Levy RJ, Huguenard JR, Pașca SP. 2019; Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures. Nat Neurosci. 22:484–491. DOI: 10.1038/s41593-018-0316-9. PMID: 30692691. PMCID: PMC6788758.
Article
101. Abud EM, Ramirez RN, Martinez ES, Healy LM, Nguyen CHH, Newman SA, Yeromin AV, Scarfone VM, Marsh SE, Fimbres C, Caraway CA, Fote GM, Madany AM, Agrawal A, Kayed R, Gylys KH, Cahalan MD, Cummings BJ, Antel JP, Mortazavi A, Carson MJ, Poon WW, Blurton-Jones M. 2017; iPSC-derived human microglia-like cells to study neurological diseases. Neuron. 94:278–293.e9. DOI: 10.1016/j.neuron.2017.03.042. PMID: 28426964. PMCID: PMC5482419.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr