4. Kettenmann H, Ransom BR. 2013. Neuroglia. 3rd ed. Oxford University Press;New York: p. 930.
5. Hu BY, Du ZW, Li XJ, Ayala M, Zhang SC. 2009; Human oligodendrocytes from embryonic stem cells: conserved SHH signaling networks and divergent FGF effects. Development. 136:1443–1452. DOI:
10.1242/dev.029447. PMID:
19363151. PMCID:
PMC2674255.
Article
6. Shaltouki A, Peng J, Liu Q, Rao MS, Zeng X. 2013; Efficient generation of astrocytes from human pluripotent stem cells in defined conditions. Stem Cells. 31:941–952. DOI:
10.1002/stem.1334. PMID:
23341249.
Article
7. Mukherjee-Clavin B, Mi R, Kern B, Choi IY, Lim H, Oh Y, Lannon B, Kim KJ, Bell S, Hur JK, Hwang W, Che YH, Habib O, Baloh RH, Eggan K, Brandacher G, Hoke A, Studer L, Kim YJ, Lee G. 2019; Comparison of three congruent patient-specific cell types for the modelling of a human genetic Schwann-cell disorder. Nat Biomed Eng. 3:571–582. DOI:
10.1038/s41551-019-0381-8. PMID:
30962586. PMCID:
PMC6612317.
Article
10. Shearman JD, Franks AJ. 1987; S-100 protein in Schwann cells of the developing human peripheral nerve. An immunohistochemical study. Cell Tissue Res. 249:459–463. DOI:
10.1007/BF00215531. PMID:
3304651.
13. Imaizumi Y, Okano H. 2014; Modeling human neurological disorders with induced pluripotent stem cells. J Neurochem. 129:388–399. DOI:
10.1111/jnc.12625. PMID:
24286589.
Article
14. Horisawa K, Suzuki A. 2020; Direct cell-fate conversion of somatic cells: toward regenerative medicine and industries. Proc Jpn Acad Ser B Phys Biol Sci. 96:131–158. DOI:
10.2183/pjab.96.012. PMID:
32281550. PMCID:
PMC7247973.
Article
15. Mitchell R, Szabo E, Shapovalova Z, Aslostovar L, Makondo K, Bhatia M. 2014; Molecular evidence for OCT4-induced plasticity in adult human fibroblasts required for direct cell fate conversion to lineage specific progenitors. Stem Cells. 32:2178–2187. DOI:
10.1002/stem.1721. PMID:
24740884.
Article
16. Kim YJ, Lim H, Li Z, Oh Y, Kovlyagina I, Choi IY, Dong X, Lee G. 2014; Generation of multipotent induced neural crest by direct reprogramming of human postnatal fibroblasts with a single transcription factor. Cell Stem Cell. 15:497–506. DOI:
10.1016/j.stem.2014.07.013. PMID:
25158936.
Article
18. Carlson BM. 2019. The human body: linking structure and function. Elsevier/Academic Press;London: p. 55.
21. Jessen KR, Mirsky R. 2005; The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci. 6:671–682. DOI:
10.1038/nrn1746. PMID:
16136171.
Article
26. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisén J. 1999; Identification of a neural stem cell in the adult mammalian central nervous system. Cell. 96:25–34. DOI:
10.1016/S0092-8674(00)80956-3.
Article
27. Carlén M, Meletis K, Göritz C, Darsalia V, Evergren E, Tanigaki K, Amendola M, Barnabé-Heider F, Yeung MS, Naldini L, Honjo T, Kokaia Z, Shupliakov O, Cassidy RM, Lindvall O, Frisén J. 2009; Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nat Neurosci. 12:259–267. DOI:
10.1038/nn.2268. PMID:
19234458.
Article
28. Wei D, Levic S, Nie L, Gao WQ, Petit C, Jones EG, Yamoah EN. 2008; Cells of adult brain germinal zone have properties akin to hair cells and can be used to replace inner ear sensory cells after damage. Proc Natl Acad Sci U S A. 105:21000–21005. DOI:
10.1073/pnas.0808044105. PMID:
19064919. PMCID:
PMC2634930.
Article
32. Höftberger R, Guo Y, Flanagan EP, Lopez-Chiriboga AS, Endmayr V, Hochmeister S, Joldic D, Pittock SJ, Tillema JM, Gorman M, Lassmann H, Lucchinetti CF. 2020; The pathology of central nervous system inflammatory demyelinating disease accompanying myelin oligodendrocyte glycoprotein autoantibody. Acta Neuropathol. 139:875–892. DOI:
10.1007/s00401-020-02132-y. PMID:
32048003. PMCID:
PMC7181560.
Article
33. Park HT, Kim YH, Lee KE, Kim JK. 2020; Behind the pathology of macrophage-associated demyelination in inflammatory neuropathies: demyelinating Schwann cells. Cell Mol Life Sci. 77:2497–2506. DOI:
10.1007/s00018-019-03431-8. PMID:
31884566. PMCID:
PMC7320037.
Article
34. Ydens E, Lornet G, Smits V, Goethals S, Timmerman V, Janssens S. 2013; The neuroinflammatory role of Schwann cells in disease. Neurobiol Dis. 55:95–103. DOI:
10.1016/j.nbd.2013.03.005. PMID:
23523637.
Article
35. Peferoen L, Kipp M, van der Valk P, van Noort JM, Amor S. 2014; Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology. 141:302–313. DOI:
10.1111/imm.12163. PMID:
23981039. PMCID:
PMC3930369.
Article
36. van Tilborg E, de Theije CGM, van Hal M, Wagenaar N, de Vries LS, Benders MJ, Rowitch DH, Nijboer CH. 2018; Origin and dynamics of oligodendrocytes in the developing brain: implications for perinatal white matter injury. Glia. 66:221–238. DOI:
10.1002/glia.23256. PMID:
29134703. PMCID:
PMC5765410.
Article
37. Najm FJ, Zaremba A, Caprariello AV, Nayak S, Freundt EC, Scacheri PC, Miller RH, Tesar PJ. 2011; Rapid and robust generation of functional oligodendrocyte progenitor cells from epiblast stem cells. Nat Methods. 8:957–962. DOI:
10.1038/nmeth.1712. PMID:
21946668. PMCID:
PMC3400969.
Article
38. Wang S, Bates J, Li X, Schanz S, Chandler-Militello D, Levine C, Maherali N, Studer L, Hochedlinger K, Windrem M, Goldman SA. 2013; Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell. 12:252–264. DOI:
10.1016/j.stem.2012.12.002. PMID:
23395447. PMCID:
PMC3700553.
Article
39. Stacpoole SR, Spitzer S, Bilican B, Compston A, Karadottir R, Chandran S, Franklin RJ. 2013; High yields of oligodendrocyte lineage cells from human embryonic stem cells at physiological oxygen tensions for evaluation of translational biology. Stem Cell Reports. 1:437–450. DOI:
10.1016/j.stemcr.2013.09.006. PMID:
24286031. PMCID:
PMC3841262.
Article
40. Piao J, Major T, Auyeung G, Policarpio E, Menon J, Droms L, Gutin P, Uryu K, Tchieu J, Soulet D, Tabar V. 2015; Human embryonic stem cell-derived oligodendrocyte progenitors remyelinate the brain and rescue behavioral deficits following radiation. Cell Stem Cell. 16:198–210. DOI:
10.1016/j.stem.2015.01.004. PMID:
25658373. PMCID:
PMC4425211.
Article
41. Yun W, Hong W, Son D, Liu HW, Kim SS, Park M, Kim IY, Kim DS, Song G, You S. 2019; Generation of anterior hindbrain-specific, glial-restricted progenitor-like cells from human pluripotent stem cells. Stem Cells Dev. 28:633–648. DOI:
10.1089/scd.2019.0033. PMID:
30880587.
Article
42. Douvaras P, Fossati V. 2015; Generation and isolation of oligodendrocyte progenitor cells from human pluripotent stem cells. Nat Protoc. 10:1143–1154. DOI:
10.1038/nprot.2015.075. PMID:
26134954.
Article
43. Douvaras P, Wang J, Zimmer M, Hanchuk S, O'Bara MA, Sadiq S, Sim FJ, Goldman J, Fossati V. 2014; Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells. Stem Cell Reports. 3:250–259. DOI:
10.1016/j.stemcr.2014.06.012. PMID:
25254339. PMCID:
PMC4176529.
Article
44. Yamashita T, Miyamoto Y, Bando Y, Ono T, Kobayashi S, Doi A, Araki T, Kato Y, Shirakawa T, Suzuki Y, Yamauchi J, Yoshida S, Sato N. 2017; Differentiation of oligodendrocyte progenitor cells from dissociated monolayer and feeder-free cultured pluripotent stem cells. PLoS One. 12:e0171947. DOI:
10.1371/journal.pone.0171947. PMID:
28192470. PMCID:
PMC5305255.
Article
45. Kim DS, Jung SJ, Lee JS, Lim BY, Kim HA, Yoo JE, Kim DW, Leem JW. 2017; Rapid generation of OPC-like cells from human pluripotent stem cells for treating spinal cord injury. Exp Mol Med. 49:e361. DOI:
10.1038/emm.2017.106. PMID:
28751784. PMCID:
PMC5565952.
Article
46. Ehrlich M, Mozafari S, Glatza M, Starost L, Velychko S, Hallmann AL, Cui QL, Schambach A, Kim KP, Bachelin C, Marteyn A, Hargus G, Johnson RM, Antel J, Sterneckert J, Zaehres H, Schöler HR, Baron-Van Evercooren A, Kuhlmann T. 2017; Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proc Natl Acad Sci U S A. 114:E2243–E2252. DOI:
10.1073/pnas.1614412114. PMID:
28246330. PMCID:
PMC5358375.
Article
47. García-León JA, Kumar M, Boon R, Chau D, One J, Wolfs E, Eggermont K, Berckmans P, Gunhanlar N, de Vrij F, Lendemeijer B, Pavie B, Corthout N, Kushner SA, Dávila JC, Lambrichts I, Hu WS, Verfaillie CM. 2018; SOX10 single transcription factor-based fast and efficient generation of oligodendrocytes from human pluripotent stem cells. Stem Cell Reports. 10:655–672. DOI:
10.1016/j.stemcr.2017.12.014. PMID:
29337119. PMCID:
PMC5830935.
Article
48. Wang J, Pol SU, Haberman AK, Wang C, O'Bara MA, Sim FJ. 2014; Transcription factor induction of human oligodendrocyte progenitor fate and differentiation. Proc Natl Acad Sci U S A. 111:E2885–E2894. DOI:
10.1073/pnas.1408295111. PMID:
24982138. PMCID:
PMC4104854.
Article
49. Schmitteckert S, Ziegler C, Rappold GA, Niesler B, Rolletschek A. 2020; Molecular characterization of embryonic stem cell-derived cardiac neural crest-like cells revealed a spatiotemporal expression of an Mlc-3 isoform. Int J Stem Cells. 13:65–79. DOI:
10.15283/ijsc19069. PMID:
31887845. PMCID:
PMC7119212.
Article
50. Soldatov R, Kaucka M, Kastriti ME, Petersen J, Chontorotzea T, Englmaier L, Akkuratova N, Yang Y, Häring M, Dyachuk V, Bock C, Farlik M, Piacentino ML, Boismoreau F, Hilscher MM, Yokota C, Qian X, Nilsson M, Bronner ME, Croci L, Hsiao WY, Guertin DA, Brunet JF, Consalez GG, Ernfors P, Fried K, Kharchenko PV, Adameyko I. 2019; Spatiotemporal structure of cell fate decisions in murine neural crest. Science. 364:eaas9536. DOI:
10.1126/science.aas9536. PMID:
31171666.
Article
51. Wilson YM, Richards KL, Ford-Perriss ML, Panthier JJ, Murphy M. 2004; Neural crest cell lineage segregation in the mouse neural tube. Development. 131:6153–6162. DOI:
10.1242/dev.01533. PMID:
15548576.
Article
53. Le Douarin NM. 2004; The avian embryo as a model to study the development of the neural crest: a long and still ongoing story. Mech Dev. 121:1089–1102. DOI:
10.1016/j.mod.2004.06.003. PMID:
15296974.
Article
54. Lee G, Kim H, Elkabetz Y, Al Shamy G, Panagiotakos G, Barberi T, Tabar V, Studer L. 2007; Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol. 25:1468–1475. Erratum in: Nat Biotechnol 2008;26:831. DOI:
10.1038/nbt0708-831b. PMID:
18037878.
Article
55. Lee G, Chambers SM, Tomishima MJ, Studer L. 2010; Derivation of neural crest cells from human pluripotent stem cells. Nat Protoc. 5:688–701. DOI:
10.1038/nprot.2010.35. PMID:
20360764.
Article
57. Huang CW, Huang WC, Qiu X, Fernandes Ferreira da Silva F, Wang A, Patel S, Nesti LJ, Poo MM, Li S. 2017; The differentiation stage of transplanted stem cells modulates nerve regeneration. Sci Rep. 7:17401. DOI:
10.1038/s41598-017-17043-4. PMID:
29234013. PMCID:
PMC5727226.
Article
58. Kreitzer FR, Salomonis N, Sheehan A, Huang M, Park JS, Spindler MJ, Lizarraga P, Weiss WA, So PL, Conklin BR. 2013; A robust method to derive functional neural crest cells from human pluripotent stem cells. Am J Stem Cells. 2:119–131. PMID:
23862100. PMCID:
PMC3708511.
59. Liu Q, Spusta SC, Mi R, Lassiter RN, Stark MR, Höke A, Rao MS, Zeng X. 2012; Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional schwann cells. Stem Cells Transl Med. 1:266–278. DOI:
10.5966/sctm.2011-0042. PMID:
23197806. PMCID:
PMC3659695.
Article
61. Ziegler L, Grigoryan S, Yang IH, Thakor NV, Goldstein RS. 2011; Efficient generation of schwann cells from human embryonic stem cell-derived neurospheres. Stem Cell Rev Rep. 7:394–403. DOI:
10.1007/s12015-010-9198-2. PMID:
21052870.
Article
62. Kim HS, Lee J, Lee DY, Kim YD, Kim JY, Lim HJ, Lim S, Cho YS. 2017; Schwann cell precursors from human pluripotent stem cells as a potential therapeutic target for myelin repair. Stem Cell Reports. 8:1714–1726. DOI:
10.1016/j.stemcr.2017.04.011. PMID:
28506533. PMCID:
PMC5469943.
Article
66. Guo G, von Meyenn F, Rostovskaya M, Clarke J, Dietmann S, Baker D, Sahakyan A, Myers S, Bertone P, Reik W, Plath K, Smith A. 2017; Epigenetic resetting of human pluripotency. Development. 144:2748–2763. Erratum in: Development 2018;145:dev166397. DOI:
10.1242/dev.146811. PMID:
28765214. PMCID:
PMC5560041.
Article
70. Najm FJ, Lager AM, Zaremba A, Wyatt K, Caprariello AV, Factor DC, Karl RT, Maeda T, Miller RH, Tesar PJ. 2013; Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells. Nat Biotechnol. 31:426–433. DOI:
10.1038/nbt.2561. PMID:
23584611. PMCID:
PMC3678540.
Article
71. Yang N, Zuchero JB, Ahlenius H, Marro S, Ng YH, Vierbuchen T, Hawkins JS, Geissler R, Barres BA, Wernig M. 2013; Generation of oligodendroglial cells by direct lineage conversion. Nat Biotechnol. 31:434–439. DOI:
10.1038/nbt.2564. PMID:
23584610. PMCID:
PMC3677690.
Article
72. Kim JB, Lee H, Araúzo-Bravo MJ, Hwang K, Nam D, Park MR, Zaehres H, Park KI, Lee SJ. 2015; Oct4-induced oligodendrocyte progenitor cells enhance functional recovery in spinal cord injury model. EMBO J. 34:2971–2983. DOI:
10.15252/embj.201592652. PMID:
26497893. PMCID:
PMC4687687.
Article
73. Mokhtarzadeh Khanghahi A, Satarian L, Deng W, Baharvand H, Javan M. 2018; In vivo conversion of astrocytes into oligodendrocyte lineage cells with transcription factor Sox10; promise for myelin repair in multiple sclerosis. PLoS One. 13:e0203785. DOI:
10.1371/journal.pone.0203785. PMID:
30212518. PMCID:
PMC6136770.
Article
74. Farhangi S, Dehghan S, Totonchi M, Javan M. 2019; In vivo conversion of astrocytes to oligodendrocyte lineage cells in adult mice demyelinated brains by Sox2. Mult Scler Relat Disord. 28:263–272. DOI:
10.1016/j.msard.2018.12.041. PMID:
30639828.
Article
75. Liu C, Hu X, Li Y, Lu W, Li W, Cao N, Zhu S, Cheng J, Ding S, Zhang M. 2019; Conversion of mouse fibroblasts into oligodendrocyte progenitor-like cells through a chemical approach. J Mol Cell Biol. 11:489–495. DOI:
10.1093/jmcb/mjy088. PMID:
30629188. PMCID:
PMC6604601.
Article
76. Weider M, Wegener A, Schmitt C, Küspert M, Hillgärtner S, Bösl MR, Hermans-Borgmeyer I, Nait-Oumesmar B, Wegner M. 2015; Elevated in vivo levels of a single transcription factor directly convert satellite glia into oligodendrocyte-like cells. PLoS Genet. 11:e1005008. DOI:
10.1371/journal.pgen.1005008. PMID:
25680202. PMCID:
PMC4334169.
Article
77. Yun W, Choi KA, Hwang I, Zheng J, Park M, Hong W, Jang AY, Kim JH, Choi W, Kim DS, Kim IY, Kim YJ, Liu Y, Yoon BS, Park G, Song G, Hong S, You S. 2022; OCT4-induced oligodendrocyte progenitor cells promote remyelination and ameliorate disease. NPJ Regen Med. 7:4. DOI:
10.1038/s41536-021-00199-z. PMID:
35027563. PMCID:
PMC8758684. PMID:
38e6a2349c0b4d4da6d467d01067452c.
Article
79. Soufi A, Garcia MF, Jaroszewicz A, Osman N, Pellegrini M, Zaret KS. 2015; Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell. 161:555–568. DOI:
10.1016/j.cell.2015.03.017. PMID:
25892221. PMCID:
PMC4409934.
Article
80. Dehghan S, Hesaraki M, Soleimani M, Mirnajafi-Zadeh J, Fathollahi Y, Javan M. 2016; Oct4 transcription factor in conjunction with valproic acid accelerates myelin repair in demyelinated optic chiasm in mice. Neuroscience. 318:178–189. DOI:
10.1016/j.neuroscience.2016.01.028. PMID:
26804242.
Article
81. Matjusaitis M, Wagstaff LJ, Martella A, Baranowski B, Blin C, Gogolok S, Williams A, Pollard SM. 2019; Reprogramming of fibroblasts to oligodendrocyte progenitor-like cells using CRISPR/Cas9-based synthetic transcription factors. Stem Cell Reports. 13:1053–1067. DOI:
10.1016/j.stemcr.2019.10.010. PMID:
31708478. PMCID:
PMC6915844.
Article
82. Sowa Y, Kishida T, Tomita K, Yamamoto K, Numajiri T, Mazda O. 2017; Direct conversion of human fibroblasts into Schwann cells that facilitate regeneration of injured peripheral nerve in vivo. Stem Cells Transl Med. 6:1207–1216. DOI:
10.1002/sctm.16-0122. PMID:
28186702. PMCID:
PMC5442846.
Article
83. Mazzara PG, Massimino L, Pellegatta M, Ronchi G, Ricca A, Iannielli A, Giannelli SG, Cursi M, Cancellieri C, Sessa A, Del Carro U, Quattrini A, Geuna S, Gritti A, Taveggia C, Broccoli V. 2017; Two factor-based reprogramming of rodent and human fibroblasts into Schwann cells. Nat Commun. 8:14088. DOI:
10.1038/ncomms14088. PMID:
28169300. PMCID:
PMC5309703. PMID:
3e5822abc9d6496093cbde7fb6236024.
Article
85. LeBlanc SE, Ward RM, Svaren J. 2007; Neuropathy-associated Egr2 mutants disrupt cooperative activation of myelin protein zero by Egr2 and Sox10. Mol Cell Biol. 27:3521–3529. DOI:
10.1128/MCB.01689-06. PMID:
17325040. PMCID:
PMC1899967.
Article
87. Nau MM, Brooks BJ, Battey J, Sausville E, Gazdar AF, Kirsch IR, McBride OW, Bertness V, Hollis GF, Minna JD. 1985; L-myc, a new myc-related gene amplified and expressed in human small cell lung cancer. Nature. 318:69–73. DOI:
10.1038/318069a0. PMID:
2997622.
Article
88. Peng S, Maihle NJ, Huang Y. 2010; Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer. Oncogene. 29:2153–2159. DOI:
10.1038/onc.2009.500. PMID:
20101213.
Article
89. Bass AJ, Watanabe H, Mermel CH, Yu S, Perner S, Verhaak RG, Kim SY, Wardwell L, Tamayo P, Gat-Viks I, Ramos AH, Woo MS, Weir BA, Getz G, Beroukhim R, O'Kelly M, Dutt A, Rozenblatt-Rosen O, Dziunycz P, Komisarof J, Chirieac LR, Lafargue CJ, Scheble V, Wilbertz T, Ma C, Rao S, Nakagawa H, Stairs DB, Lin L, Giordano TJ, Wagner P, Minna JD, Gazdar AF, Zhu CQ, Brose MS, Cecconello I, Ribeiro U Jr, Marie SK, Dahl O, Shivdasani RA, Tsao MS, Rubin MA, Wong KK, Regev A, Hahn WC, Beer DG, Rustgi AK, Meyerson M. 2009; SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet. 41:1238–1242. DOI:
10.1038/ng.465. PMID:
19801978. PMCID:
PMC2783775.
Article
90. Kilmister EJ, Patel J, Bockett N, Chang-McDonald B, Sim D, Wickremesekera A, Davis PF, Tan ST. 2020; Embryonic stem cell-like subpopulations are present within Schwannoma. J Clin Neurosci. 81:201–209. DOI:
10.1016/j.jocn.2020.09.037. PMID:
33222917.
Article
91. Kristensen BW, Priesterbach-Ackley LP, Petersen JK, Wesseling P. 2019; Molecular pathology of tumors of the central nervous system. Ann Oncol. 30:1265–1278. DOI:
10.1093/annonc/mdz164. PMID:
31124566. PMCID:
PMC6683853.
Article
94. Mateu R, Živicová V, Krejčí ED, Grim M, Strnad H, Vlček Č, Kolář M, Lacina L, Gál P, Borský J, Smetana K Jr, Dvořánková B. 2016; Functional differences between neonatal and adult fibroblasts and keratinocytes: donor age affects epithelial-mesenchymal crosstalk in vitro. Int J Mol Med. 38:1063–1074. DOI:
10.3892/ijmm.2016.2706. PMID:
27513730. PMCID:
PMC5029973.
Article
95. Chipev CC, Simon M. 2002; Phenotypic differences between dermal fibroblasts from different body sites determine their responses to tension and TGFbeta1. BMC Dermatol. 2:13. DOI:
10.1186/1471-5945-2-13. PMID:
12445328. PMCID:
PMC138803.
97. Kitada M, Murakami T, Wakao S, Li G, Dezawa M. 2019; Direct conversion of adult human skin fibroblasts into functional Schwann cells that achieve robust recovery of the severed peripheral nerve in rats. Glia. 67:950–966. DOI:
10.1002/glia.23582. PMID:
30637802.
Article
100. Marton RM, Miura Y, Sloan SA, Li Q, Revah O, Levy RJ, Huguenard JR, Pașca SP. 2019; Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures. Nat Neurosci. 22:484–491. DOI:
10.1038/s41593-018-0316-9. PMID:
30692691. PMCID:
PMC6788758.
Article
101. Abud EM, Ramirez RN, Martinez ES, Healy LM, Nguyen CHH, Newman SA, Yeromin AV, Scarfone VM, Marsh SE, Fimbres C, Caraway CA, Fote GM, Madany AM, Agrawal A, Kayed R, Gylys KH, Cahalan MD, Cummings BJ, Antel JP, Mortazavi A, Carson MJ, Poon WW, Blurton-Jones M. 2017; iPSC-derived human microglia-like cells to study neurological diseases. Neuron. 94:278–293.e9. DOI:
10.1016/j.neuron.2017.03.042. PMID:
28426964. PMCID:
PMC5482419.
Article