J Neurogastroenterol Motil.  2020 Jul;26(3):397-409. 10.5056/jnm19095.

EphrinA1/EphA2 Promotes Epithelial Hyperpermeability Involving in Lipopolysaccharide-induced Intestinal Barrier Dysfunction

Affiliations
  • 1Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
  • 2Department of Gastrointestinal Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China

Abstract

Background/Aims
Lipopolysaccharide (LPS) is the key factor inducing mucosal and systemic inflammation in various intestinal and parenteral diseases, which could initially disrupt the epithelial barrier function. EphrinA1/ephA2 is speculated to increase the epithelial permeability for its “repulsive interaction” between adjacent cells. This study aim to investigate the role of ephrinA1/ephA2 in LPS-induced epithelial hyperpermeability.
Methods
In vivo model challenged with oral LPS in C57BL/6 mice and in vitro model exposed to LPS in Caco2 monolayer were established. The barrier function was assessed including expression of tight junction proteins (occludin and claudin-1), transepithelial electrical resistance, and permeability to macromolecules (fluorescein isothiocyanate-labeled fluorescent dextran 4 kDa [FD4]). Moreover, the expression and phosphorylation of ephrinA1/ephA2 were quantified, and its roles in the process of epithelial barrier disruption were confirmed via stimulating ephA2 with ephrinA1-Fc chimera (ephrinA1-Fc) and inactivating ephA2 with ephA2-Fc chimera (ephA2-Fc), or ephA2 monoclonal antibody (ephA2-mab), as well as inhibiting extracellular signal-regulated kinase 1/2 (ERK1/2) with PD98059.
Results
LPS induced significant barrier dysfunction with dismissed occludin and claudin-1 expression, reduced transepithelial electrical resistance and increased FD4 permeability, accompanied by upregulated ephrinA1/ephA2 pathway and phosphorylation of ephA2 receptor. Furthermore, ephA2-Fc, and ephA2-mab ameliorated LPS-induced epithelial hyperpermeability, which was also inhibited by PD98059. Additionally, ephrinA1-Fc led to apparent epithelial leakage in Caco2 monolayer by promoting the phosphorylation of ERK1/2, which could be obviously blocked by ephA2-mab and PD98059.
Conclusion
EphrinA1/ephA2 promotes epithelial hyperpermeability with an ERK1/2-dependent pathway, which involves in LPS-induced intestinal barrier dysfunction.

Keyword

Lipopolysaccharides; Receptor, EphA2; Receptor, Fc; Tight junction proteins
Full Text Links
  • JNM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr