Int J Stem Cells.  2020 Mar;13(1):151-162. 10.15283/ijsc19004.

Hyaluronan Induces a Mitochondrial Functional Switch in Fast-Proliferating Human Mesenchymal Stem Cells

Affiliations
  • 1Gorgas Memorial Institute for Health Studies, Panama, Panama
  • 2Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
  • 3Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
  • 4Department of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
  • 5Department of Obstetrics and Gynecology, National Cheng Kung University, Tainan, Taiwan
  • 6Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
  • 7Research Center of Excellence in Regenerative Medicine, National Cheng Kung University, Tainan, Taiwan
  • 8International Research Center of Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan

Abstract

Background and Objectives
Hyaluronan preserves the proliferation and differentiation potential of mesenchymal stem cells. Supplementation of low-concentration hyaluronan (SHA) in stem cells culture medium increases its proliferative rate, whereas coated-surface hyaluronan (CHA) maintains cells in a slow-proliferating mode. We have previously demonstrated that in CHA, the metabolic proliferative state of stem cells was influenced by upregulating mitochondrial biogenesis and function. However, the effect of SHA on stem cells’ energetic status remains unknown. In this study, we demonstrate the effect that low-concentration SHA at 0.001 mg/ml (SHA0.001) and high-concentration SHA at 5 mg/ml (SHA5) exert on stem cells’ mitochondrial function compared with CHA and noncoated tissue culture surface (control).
Methods and Results
Fast-proliferating human placenta-derived mesenchymal stem cells (PDMSCs) cultured on SHA0.001 exhibited reduced mitochondrial mass, lower mitochondrial DNA copy number, and lower oxygen consumption rate compared with slow-proliferating PDMSCs cultured on CHA at 5.0 (CHA5) or 30 μg/cm2 (CHA30). The reduced mitochondrial biogenesis observed in SHA0.001 was accompanied by a 2-fold increased ATP content and lactate production, suggesting that hyaluronan-induced fast-proliferating PDMSCs may rely less on mitochondrial function as an energy source and induce a mitochondrial functional switch to glycolysis.
Conclusions
PDMSCs cultured on both CHA and SHA exhibited a reduction in reactive oxygen species levels. The results from this study clarify our understandings on the effect of hyaluronan on stem cells and provide important insights into the effect of distinct supplementation methods used during cell therapies.

Keyword

Hyaluronan; Mesenchymal stem cells; Mitochondria; Cellular proliferation

Figure

  • Fig. 1 PDMSCs possess plastic adherence characteristics, differentiate into MSC specific lineages, and express MSC CD Markers. PDMSCs cultured on control surface contained (A) fibroblastic morphology and plastic adherence characteristic; were assayed for differentiation ability by 32-day culture in (B) adipogenesis, (C) chondrogenesis, and (D) osteogenesis differentiation medium; and (E) positively express the MSC CD markers CD73, CD90, and CD105. Images obtained after oil red, alcian blue, and alizarin red, respectively. PE: Phycoerythrin, FITC: Fluorescein Isothiocyanate, APC: Allophycocyanin. Scale bar: 100 μm.

  • Fig. 2 Different hyaluronan substratum exerted changes in PDMSCs cellular proliferation and morphology. (A) Cumulative population doubling of PDMSCs cultured for 34 days on control, medium supplemented hyaluronan (SHA 0.001, 0.01, 1, and 5 mg/ml), or coated hyaluronan (CHA 0.5, 3, 5, 30 μg/cm2). The drawing represents the cumulative population doublings with time where each dot represents one passage approximately every 4 days. Cumulative population doubling is expressed as mean±SD of at least triplicates; (B) cell growth curve and (C) morphological changes of PDMSCs cultured for 5 days in control, SHA 0.001 and 5 mg/ml; or CHA 5 and 30 μg/cm2. Scale bar: 100 μm. SHA: medium supplemented hyaluronan, CHA: coated hyaluronan. Three independent experiments were performed in control and experimental groups and data are represented in mean±SD.

  • Fig. 3 Different hyaluronan substratum exerted changes in mitochondrial distribution of PDMSCs. Successful clones for lentivector pAS3W-DsRed2-mito after ligation of the vectors pLKOAS3w.puro and pDsRed2-mito. (A) PCR gels showed successful clone band at 800 bp; and sequence alignment of 99% from restriction enzyme cutting sites of NheI at 96 bp and PmeI at 892 bp. (B) Transfection of PDMSCs with pAS3W-DsRed2-mito enabled red fluorescence labelling of mitochondria specifically. Lentivector containing DsRed-mito showed fluorescence punctuated patterns when transfected into PDMSCs, whereas lentivector with only DsRed showed a diffused fluorescence pattern; (C) mitochondrial localization of PDMSCs cultured for 5 days on control surfaces, SHA 0.001 and SHA 5 mg/ml or CHA 5 and 30 μg/cm2. (D) Confocal images of mitochondrial distribution in hyaluronan-supplemented PDMSCs. Red fluorescence represents mitochondria through PDMSCs transfected with expression plasmid pAS3W-DsRed2-mito; blue fluorescence represents nucleus through DAPI staining. Scale bar: 100 μm. SHA: medium supplemented hyaluronan, CHA: coated hyaluronan, DAPI: 4’,6-diamidino-2-phenylindole.

  • Fig. 4 Hyaluronan-induced fast-proliferative PDMSC had lower mitochondrial biogenesis. (A) Mitochondrial mass; (B) mtDNA copy number; All data is expressed as mean±SD of at least three replicates and analyzed by the paired t-test (*p<0.05, **p<0.01). Mitochondrial mass was analyzed by using PDMSCs transfected with expression plasmid pAS3w-DsRed2-mito. SHA: medium supplemented hyaluronan, CHA: coated hyaluronan, mtDNA: mitochondrial DNA, RFU: relative fluorescence unit.

  • Fig. 5 Higher ATP content and lactate production in hyaluronan-induced fast-proliferative PDMSCs. (A) ATP content; (B) OCR; (C) lactate production; (D) LDHA levels; and (E) ROS levels of PDMSCs cultured on control surface, SHA (0.001 mg/ml and 5 mg/ml), or CHA (5 and 30 μg/cm2). All data is expressed as mean±SD of at least three replicates and analyzed by paired t-test (*p<0.05, **p<0.01). SHA: medium supplemented hyaluronan, CHA: coated hyaluronan, ATP: adenosine triphosphate, OCR: oxygen consumption rate, ROS: reactive oxygen species, RFU: relative fluorescence unit, H2O2: hydrogen peroxide, O2−: superoxide anion.


Reference

References

1. Wong TY, Chang CH, Yu CH, Huang LLH. 2017; Hyaluronan keeps mesenchymal stem cells quiescent and maintains the differentiation potential over time. Aging Cell. 16:451–460. DOI: 10.1111/acel.12567. PMID: 28474484. PMCID: PMC5418204.
Article
2. Chen PY, Huang LL, Hsieh HJ. 2007; Hyaluronan preserves the proliferation and differentiation potentials of long-term cultured murine adipose-derived stromal cells. Biochem Biophys Res Commun. 360:1–6. DOI: 10.1016/j.bbrc.2007.04.211. PMID: 17586465.
Article
3. Solis MA, Wei YH, Chang CH, Yu CH, Kuo PL, Huang LL. 2016; Hyaluronan upregulates mitochondrial biogenesis and reduces adenoside triphosphate production for efficient mitochondrial function in slow-proliferating human mesenchymal stem cells. Stem Cells. 34:2512–2524. DOI: 10.1002/stem.2404. PMID: 27354288.
Article
4. Alessio N, Stellavato A, Squillaro T, Del Gaudio S, Di Bernardo G, Peluso G, De Rosa M, Schiraldi C, Galderisi U. 2018; Hybrid complexes of high and low molecular weight hyaluronan delay in vitro replicative senescence of mesenchymal stromal cells: a pilot study for future therapeutic application. Aging (Albany NY). 10:1575–1585. DOI: 10.18632/aging.101493. PMID: 30001217. PMCID: PMC6075440.
Article
5. Chanmee T, Ontong P, Izumikawa T, Higashide M, Mochizuki N, Chokchaitaweesuk C, Khansai M, Nakajima K, Kakizaki I, Kongtawelert P, Taniguchi N, Itano N. 2016; Hyaluronan production regulates metabolic and cancer stem-like properties of breast cancer cells via hexosamine biosynthetic pathway-coupled HIF-1 signaling. J Biol Chem. 291:24105–24120. DOI: 10.1074/jbc.M116.751263. PMID: 27758869. PMCID: PMC5104936.
Article
6. Lambricht L, De Berdt P, Vanacker J, Leprince J, Diogenes A, Goldansaz H, Bouzin C, Préat V, Dupont-Gillain C, des Rieux A. 2014; The type and composition of alginate and hyaluronic-based hydrogels influence the viability of stem cells of the apical papilla. Dent Mater. 30:e349–e361. DOI: 10.1016/j.dental.2014.08.369. PMID: 25182372.
Article
7. Xu X, Duan S, Yi F, Ocampo A, Liu GH, Izpisua Belmonte JC. 2013; Mitochondrial regulation in pluripotent stem cells. Cell Metab. 18:325–332. DOI: 10.1016/j.cmet.2013.06.005. PMID: 23850316.
Article
8. Grishko V, Xu M, Ho R, Mates A, Watson S, Kim JT, Wilson GL, Pearsall AW 4th. 2009; Effects of hyaluronic acid on mitochondrial function and mitochondria-driven apoptosis following oxidative stress in human chondrocytes. J Biol Chem. 284:9132–9139. DOI: 10.1074/jbc.M804178200. PMID: 19193642. PMCID: PMC2666563.
Article
9. Cyphert JM, Trempus CS, Garantziotis S. 2015; Size matters: molecular weight specificity of hyaluronan effects in cell biology. Int J Cell Biol. 2015:563818. DOI: 10.1155/2015/563818. PMID: 26448754. PMCID: PMC4581549.
Article
10. Liu RM, Sun RG, Zhang LT, Zhang QF, Chen DX, Zhong JJ, Xiao JH. 2016; Hyaluronic acid enhances proliferation of human amniotic mesenchymal stem cells through activation of Wnt/β-catenin signaling pathway. Exp Cell Res. 345:218–229. DOI: 10.1016/j.yexcr.2016.05.019. PMID: 27237096.
Article
11. Joddar B, Kitajima T, Ito Y. 2011; The effects of covalently immobilized hyaluronic acid substrates on the adhesion, expansion, and differentiation of embryonic stem cells for in vitro tissue engineering. Biomaterials. 32:8404–8415. DOI: 10.1016/j.biomaterials.2011.07.083. PMID: 21871660.
Article
12. Liu CM, Chang CH, Yu CH, Hsu CC, Huang LL. 2009; Hyaluronan substratum induces multidrug resistance in human mesenchymal stem cells via CD44 signaling. Cell Tissue Res. 336:465–475. DOI: 10.1007/s00441-009-0780-3. PMID: 19350274.
Article
13. Lonergan T, Brenner C, Bavister B. 2006; Differentiation-related changes in mitochondrial properties as indicators of stem cell competence. J Cell Physiol. 208:149–153. DOI: 10.1002/jcp.20641. PMID: 16575916.
Article
14. Wong TY, Chen YH, Liu SH, Solis MA, Yu CH, Chang CH, Huang LL. 2016; Differential proteomic analysis of human placenta-derived mesenchymal stem cells cultured on normal tissue culture surface and hyaluronan-coated surface. Stem Cells Int. 2016:2809192. DOI: 10.1155/2016/2809192. PMID: 27057169. PMCID: PMC4709773.
Article
15. Kunze R, Rösler M, Möller S, Schnabelrauch M, Riemer T, Hempel U, Dieter P. 2010; Sulfated hyaluronan derivatives reduce the proliferation rate of primary rat calvarial osteoblasts. Glycoconj J. 27:151–158. DOI: 10.1007/s10719-009-9270-9. PMID: 19941065.
Article
16. Vazin T, Freed WJ. 2010; Human embryonic stem cells: derivation, culture, and differentiation: a review. Restor Neurol Neurosci. 28:589–603. DOI: 10.3233/RNN-2010-0543. PMID: 20714081. PMCID: PMC2973558.
Article
17. Chen WY, Abatangelo G. 1999; Functions of hyaluronan in wound repair. Wound Repair Regen. 7:79–89. DOI: 10.1046/j.1524-475X.1999.00079.x. PMID: 10231509.
Article
18. Forman DS, Lynch KJ, Smith RS. 1987; Organelle dynamics in lobster axons: anterograde, retrograde and stationary mitochondria. Brain Res. 412:96–106. DOI: 10.1016/0006-8993(87)91443-0. PMID: 3607465.
Article
19. Frederick RL, Shaw JM. 2007; Moving mitochondria: establishing distribution of an essential organelle. Traffic. 8:1668–1675. DOI: 10.1111/j.1600-0854.2007.00644.x. PMID: 17944806. PMCID: PMC3739988.
Article
20. Murphy MP. 2012; Modulating mitochondrial intracellular location as a redox signal. Sci Signal. 5:pe39. DOI: 10.1126/scisignal.2003386. PMID: 22990116.
Article
21. Mandal S, Lindgren AG, Srivastava AS, Clark AT, Banerjee U. 2011; Mitochondrial function controls proliferation and early differentiation potential of embryonic stem cells. Stem Cells. 29:486–495. DOI: 10.1002/stem.590. PMID: 21425411. PMCID: PMC4374603.
Article
22. Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J. 2010; The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells. 28:721–733. DOI: 10.1002/stem.404. PMID: 20201066.
Article
23. Smith ER, Zhang XY, Capo-Chichi CD, Chen X, Xu XX. 2011; Increased expression of Syne1/nesprin-1 facilitates nuclear envelope structure changes in embryonic stem cell differentiation. Dev Dyn. 240:2245–2255. DOI: 10.1002/dvdy.22717. PMID: 21932307. PMCID: PMC3290128.
Article
24. Vander Heiden MG, Cantley LC, Thompson CB. 2009; Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 324:1029–1033. DOI: 10.1126/science.1160809. PMID: 19460998. PMCID: PMC2849637.
Article
25. Lakshman M, Subramaniam V, Rubenthiran U, Jothy S. 2004; CD44 promotes resistance to apoptosis in human colon cancer cells. Exp Mol Pathol. 77:18–25. DOI: 10.1016/j.yexmp.2004.03.002. PMID: 15215046.
Article
26. Nolan MJ, Koga T, Walker L, McCarty R, Grybauskas A, Giovingo MC, Skuran K, Kuprys PV, Knepper PA. 2013; sCD44 internalization in human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 54:592–601. DOI: 10.1167/iovs.12-10627. PMID: 23287794. PMCID: PMC3558300.
Article
27. Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, Ikeda Y, Perez-Terzic C, Terzic A. 2011; Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 14:264–271. DOI: 10.1016/j.cmet.2011.06.011. PMID: 21803296. PMCID: PMC3156138.
Article
28. Guo HW, Yu JS, Hsu SH, Wei YH, Lee OK, Dong CY, Wang HW. 2015; Correlation of NADH fluorescence lifetime and oxidative phosphorylation metabolism in the osteogenic differentiation of human mesenchymal stem cell. J Biomed Opt. 20:017004. DOI: 10.1117/1.JBO.20.1.017004. PMID: 25629291.
Article
29. Son MJ, Jeong BR, Kwon Y, Cho YS. 2013; Interference with the mitochondrial bioenergetics fuels reprogramming to pluripotency via facilitation of the glycolytic transition. Int J Biochem Cell Biol. 45:2512–2518. DOI: 10.1016/j.biocel.2013.07.023. PMID: 23939289.
Article
30. Wu SB, Wei YH. 2012; AMPK-mediated increase of glycolysis as an adaptive response to oxidative stress in human cells: implication of the cell survival in mitochondrial diseases. Biochim Biophys Acta. 1822:233–247. DOI: 10.1016/j.bbadis.2011.09.014. PMID: 22001850.
Article
31. Zhang J, Nuebel E, Daley GQ, Koehler CM, Teitell MA. 2012; Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell. 11:589–595. DOI: 10.1016/j.stem.2012.10.005. PMID: 23122286. PMCID: PMC3492890.
Article
32. Zhang L, Marsboom G, Glick D, Zhang Y, Toth PT, Jones N, Malik AB, Rehman J. 2014; Bioenergetic shifts during transitions between stem cell states (2013 Grover Conference series). Pulm Circ. 4:387–394. DOI: 10.1086/677353. PMID: 25621152. PMCID: PMC4278598.
Article
33. Birket MJ, Orr AL, Gerencser AA, Madden DT, Vitelli C, Swistowski A, Brand MD, Zeng X. 2011; A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells. J Cell Sci. 124:348–358. DOI: 10.1242/jcs.072272. PMID: 21242311. PMCID: PMC3021997.
Article
34. Darzynkiewicz Z, Balazs EA. 2012; Genome integrity, stem cells and hyaluronan. Aging (Albany NY). 4:78–88. DOI: 10.18632/aging.100438. PMID: 22383371. PMCID: PMC3314170.
Article
35. Saha P, Chowdhury AR, Dutta S, Chatterjee S, Ghosh I, Datta K. 2013; Autophagic vacuolation induced by excess ROS generation in HABP1/p32/gC1qR overexpressing fibroblasts and its reversal by polymeric hyaluronan. PLoS One. 8:e78131. DOI: 10.1371/journal.pone.0078131. PMID: 24205125. PMCID: PMC3799741.
Article
36. El-Safory NS, Lee CK. 2010; Cytotoxic and antioxidant effects of unsaturated hyaluronic acid oligomers. Carbohydr Polym. 82:1116–1123. DOI: 10.1016/j.carbpol.2010.06.042.
Article
37. Zhao H, Tanaka T, Mitlitski V, Heeter J, Balazs EA, Darzynkiewicz Z. 2008; Protective effect of hyaluronate on oxidative DNA damage in WI-38 and A549 cells. Int J Oncol. 32:1159–1167. DOI: 10.3892/ijo_32_6_1159. PMID: 18497977. PMCID: PMC2581747.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr