Int J Stem Cells.  2020 Mar;13(1):104-115. 10.15283/ijsc19098.

Quantitative Tracking Tumor Suppression Efficiency of Human Umbilical Cord-Derived Mesenchymal Stem Cells by Bioluminescence Imaging in Mice Hepatoma Model

Affiliations
  • 1Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
  • 2Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China

Abstract

Background and Objectives
Tracking of the tumor progression by MSCs-based therapy is being increasingly important in evaluating relative therapy effectively. Herein, Bioluminescence imaging (BLI) technology was used to dynamically and quantitatively track the hepatocellular carcinoma suppressive effects by human umbilical cord mesenchymal stem cells (UC-MSCs).
Methods and Results
The stem cells present typical phenotypic characteristics and differentiation ability by morphology and flow cytometry analysis of marker expression. Then, the growth inhibition effect of conditioned medium and UC-MSC on H7402 cells was studied. It is found both the conditioned medium and UC-MSC can effectively decrease the proliferation of H7402 cells compared with the control group. Meanwhile, the relative migration of UC-MSC to H7402 is also increased through the transwell migration assay. In addition, a mice hepatoma tumor model was built by H7402 cells which can express a pLenti-6.3/DEST-CMV-luciferase 2-mKate2 gene. The effect of stem cells on growth inhibition of tumor in a mice transplantation model was dynamically monitored by bioluminescence imaging within 5 weeks. It has shown the bioluminescence signal intensity of the tumor model was significantly higher than that of the UC-MSC co-acting tumor model, indicating that the inhibition of UC-MSC on liver cancer resulted in low expression of bioluminescent signals.
Conclusions
The microenvironment of UC-MSCs can effectively inhibit the growth of liver cancer cells, and this therapeutic effect can be dynamically and quantitatively monitored in vivo by BLI. This is of great significance for the imaging research and application of stem cells in anticancer therapy.

Keyword

Mesenchymal stem cells; Bioluminescent imaging; Hepatocellular carcinoma; Cancer therapy; Tumor environment

Figure

  • Fig. 1 (a) The cell morphology of UC-MSCs was observed under a light microscope (magnification, ×100). (b∼d) Representative images of osteocyte, adipocyte, and chondrocyte differentiation of UC-MSCs cultured in the differentiation media. The cells were analyzed using cytochemical staining with Alizarin Red, Oil red O, and Alcian Blue respectively. The experiment shown is representative of three performed (magnification, ×200).

  • Fig. 2 (a, b) Optical image and FACS of H7402 cells. (c, d) High-level expression of mKate2 in H7402 cells was demonstrated by fluorescence microscope and FACS. (e, f) In vitro imaging analysis of stably transduced H7402 cells shows a strong correlation between cell numbers and reporter gene activity. Scale bar represents 100 μm.

  • Fig. 3 (a) CCK-8 assay of H7402 cells with different concentration of UC-MSCs-CM for 96 h. Values are means±S.E. of three separate experiments performed (p<0.001). (b) The biological effects of different concentrations of UC-MSCs conditioned media on H7402 cell apoptosis.

  • Fig. 4 Migration ability of UC-MSCs to H7402 cells was examined using a transwell assay under different conditions. (a) Fresh 1640, (b) H7402 cells, (c) H7402-CM. (d) Average number of cells migrated in the transwell assay in different conditions. The results were expressed as the mean±S.D. in five different fields from three independent experiments (*p<0.05 and **p<0.01).

  • Fig. 5 Tumor growth monitored by bioluminescence imaging (BLI). (a) The bioluminescence images of the tumor-bearing mice (n=5) from the groups implanted with H7402 cells alone or (b) H7402 cells co-implanted with UC-MSCs in 35 days. (c) Imaging of the tumor-bearing mice from the groups implanted with H7402 cells alone or (d) H7402 cells co-implanted with UC-MSCs at 35 days post implantation. (e) Quantitative analysis of bioluminescence imaging signal.

  • Fig. 6 (a) Histopathological images of liver tumor tissues in experimental mice. HE and MVD staining of the tumor and the tumor treated with UC-MSCs. (b) The data are presented as the mean±standard deviation (SD).


Reference

References

1. Arthur A, Zannettino A, Gronthos S. 2009; The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J Cell Physiol. 218:237–245. DOI: 10.1002/jcp.21592. PMID: 18792913.
Article
2. Godwin EE, Young NJ, Dudhia J, Beamish IC, Smith RK. 2012; Implantation of bone marrow-derived mesenchymal stem cells demonstrates improved outcome in horses with overstrain injury of the superficial digital flexor tendon. Equine Vet J. 44:25–32. DOI: 10.1111/j.2042-3306.2011.00363.x. PMID: 21615465.
Article
3. Csaki C, Schneider PR, Shakibaei M. 2008; Mesenchymal stem cells as a potential pool for cartilage tissue engineering. Ann Anat. 190:395–412. DOI: 10.1016/j.aanat.2008.07.007. PMID: 18842397.
Article
4. Qin J, Zhao Y, Wang Y, Betzler C, Popp F, Sen Gupta A, Augsburger D, Camaj P, Nelson P, Bruns C. 2016; Therapeutic potential of mesenchymal stem cells in gastrointestinal cancers - current evidence. Gastrointest Cancer. 6:41–47. DOI: 10.2147/GICTT.S54121.
5. Niess H, Bao Q, Conrad C, Zischek C, Notohamiprodjo M, Schwab F, Schwarz B, Huss R, Jauch KW, Nelson PJ, Bruns CJ. 2011; Selective targeting of genetically engineered mesenchymal stem cells to tumor stroma microenvironments using tissue-specific suicide gene expression suppresses growth of hepatocellular carcinoma. Ann Surg. 254:767–774. discussion 774-775. DOI: 10.1097/SLA.0b013e3182368c4f. PMID: 22042469.
Article
6. Zhu W, Xu W, Jiang R, Qian H, Chen M, Hu J, Cao W, Han C, Chen Y. 2006; Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp Mol Pathol. 80:267–274. DOI: 10.1016/j.yexmp.2005.07.004. PMID: 16214129.
Article
7. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, Andreeff M, Lang FF. 2005; Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res. 65:3307–3318. DOI: 10.1158/0008-5472.CAN-04-1874. PMID: 15833864.
Article
8. Kidd S, Caldwell L, Dietrich M, Samudio I, Spaeth EL, Watson K, Shi Y, Abbruzzese J, Konopleva M, Andreeff M, Marini FC. 2010; Mesenchymal stromal cells alone or expressing interferon-beta suppress pancreatic tumors in vivo, an effect countered by anti-inflammatory treatment. Cytotherapy. 12:615–625. DOI: 10.3109/14653241003631815. PMID: 20230221.
Article
9. Maestroni GJ, Hertens E, Galli P. 1999; Factor(s) from nonmacrophage bone marrow stromal cells inhibit Lewis lung carcinoma and B16 melanoma growth in mice. Cell Mol Life Sci. 55:663–667. DOI: 10.1007/s000180050322. PMID: 10357234.
Article
10. Li L, Neaves WB. 2006; Normal stem cells and cancer stem cells: the niche matters. Cancer Res. 66:4553–4557. DOI: 10.1158/0008-5472.CAN-05-3986. PMID: 16651403.
Article
11. Brücher BL, Jamall IS. 2014; Cell-cell communication in the tumor microenvironment, carcinogenesis, and anticancer treatment. Cell Physiol Biochem. 34:213–243. DOI: 10.1159/000362978. PMID: 25034869.
Article
12. Camorani S, Hill BS, Fontanella R, Greco A, Gramanzini M, Auletta L, Gargiulo S, Albanese S, Lucarelli E, Cerchia L, Zannetti A. 2017; Inhibition of bone marrow-derived mesenchymal stem cells homing towards triple-negative breast cancer microenvironment using an anti-PDGFRβ aptamer. Theranostics. 7:3595–3607. DOI: 10.7150/thno.18974. PMID: 28912898. PMCID: PMC5596446.
Article
13. Arutyunyan I, Elchaninov A, Makarov A, Fatkhudinov T. 2016; Umbilical cord as prospective source for mesenchymal stem cell-based therapy. Stem Cells Int. 2016:6901286. DOI: 10.1155/2016/6901286. PMID: 27651799. PMCID: PMC5019943.
Article
14. Patel DM, Shah J, Srivastava AS. 2013; Therapeutic potential of mesenchymal stem cells in regenerative medicine. Stem Cells Int. 2013:496218. DOI: 10.1155/2013/496218. PMID: 23577036. PMCID: PMC3615627.
Article
15. Sadikot RT, Blackwell TS. 2008; Bioluminescence: imaging modality for in vitro and in vivo gene expression. Methods Mol Biol. 477:383–394. DOI: 10.1007/978-1-60327-517-0_29. PMID: 19082962.
Article
16. Jelicks LA, Lisanti MP, Machado FS, Weiss LM, Tanowitz HB, Desruisseaux MS. 2013; Imaging of small-animal models of infectious diseases. Am J Pathol. 182:296–304. DOI: 10.1016/j.ajpath.2012.09.026. PMID: 23201133. PMCID: PMC3969504.
Article
17. de Almeida PE, van Rappard JR, Wu JC. 2011; In vivo bioluminescence for tracking cell fate and function. Am J Physiol Heart Circ Physiol. 301:H663–H671. DOI: 10.1152/ajpheart.00337.2011. PMID: 21666118. PMCID: PMC3191083.
Article
18. Negrin RS, Contag CH. 2006; In vivo imaging using bioluminescence: a tool for probing graft-versus-host disease. Nat Rev Immunol. 6:484–490. DOI: 10.1038/nri1879. PMID: 16724101.
Article
19. Bhaumik S, Gambhir SS. 2002; Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci U S A. 99:377–382. DOI: 10.1073/pnas.012611099. PMID: 11752410. PMCID: PMC117568.
Article
20. Chang M, Anttonen KP, Cirillo SL, Francis KP, Cirillo JD. 2014; Real-time bioluminescence imaging of mixed mycobacterial infections. PLoS One. 9:e108341. DOI: 10.1371/journal.pone.0108341. PMID: 25265287. PMCID: PMC4180448.
Article
21. Ayatollahi M, Geramizadeh B, Zakerinia M, Ramzi M, Yaghobi R, Hadadi P, Rezvani AR, Aghdai M, Azarpira N, Karimi H. 2012; Human bone marrow-derived mesenchymal stem cell: a source for cell-based therapy. Int J Organ Transplant Med. 3:32–41. PMID: 25013621. PMCID: PMC4089277.
22. Li M, Ikehara S. 2013; Bone-marrow-derived mesenchymal stem cells for organ repair. Stem Cells Int. 2013:132642. DOI: 10.1155/2013/132642. PMID: 23554816. PMCID: PMC3608346.
Article
23. Sun B, Yu KR, Bhandari DR, Jung JW, Kang SK, Kang KS. 2010; Human umbilical cord blood mesenchymal stem cell-derived extracellular matrix prohibits metastatic cancer cell MDA-MB-231 proliferation. Cancer Lett. 296:178–185. DOI: 10.1016/j.canlet.2010.04.007. PMID: 20435406.
Article
24. Hollweck T, Hagl C, Eissner G. 2012; Mesenchymal stem cells from umbilical cord tissue as potential therapeutics for cardiomyodegenerative diseases - a review. Int J Mol Cell Med. 1:119–132. PMID: 24551768. PMCID: PMC3920507.
25. Hemming AW, Berumen J, Mekeel K. 2016; Hepatitis B and hepatocellular carcinoma. Clin Liver Dis. 20:703–720. DOI: 10.1016/j.cld.2016.06.007. PMID: 27742009.
Article
26. Liu Y, Guo X, Wu L, Yang M, Li Z, Gao Y, Liu S, Zhou G, Zhao J. 2016; Lipid rafts promote liver cancer cell proliferation and migration by up-regulation of TLR7 expression. Oncotarget. 7:63856–63869. DOI: 10.18632/oncotarget.11697. PMID: 27588480. PMCID: PMC5325409.
Article
27. Stoltz A, Gagnière J, Dupré A, Rivoire M. 2014; Radiofrequency ablation for colorectal liver metastases. J Visc Surg. 151(Suppl 1):S33–S44. DOI: 10.1016/j.jviscsurg.2013.12.005. PMID: 24582728.
Article
28. Carnaghi C, Chiti A, Marzo K, Rodari M, Rimassa L, Tronconi MC, Santoro A. 2005; 18F-FDG-PET (PET) and contrast-enhanced CT-scan (CT) in the evaluation of liver metastases from colorectal cancer after chemotherapy. J Clin Oncol. 16:3713–3717. DOI: 10.1200/jco.2005.23.16_suppl.3710.
29. Schwartz JM, Ham JM. 2003; Treatment of hepatocellular carcinoma. Curr Treat Options Gastroenterol. 6:402. DOI: 10.1007/s11938-003-0048-z. PMID: 14585235.
Article
30. Liu JJ, Hu XJ, Li ZR, Yan RH, Li D, Wang J, Shan H. 2017; In vivo bioluminescence imaging of transplanted mesenchymal stromal cells and their rejection mediated by intrahepatic nk cells. Mol Imaging Biol. 19:31–40. DOI: 10.1007/s11307-016-0962-9. PMID: 27406089.
Article
31. Salehinejad P, Alitheen NB, Ali AM, Omar AR, Mohit M, Janzamin E, Samani FS, Torshizi Z, Nematollahi-Mahani SN. 2012; Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton's jelly. In Vitro Cell Dev Biol Anim. 48:75–83. DOI: 10.1007/s11626-011-9480-x. PMID: 22274909.
Article
32. Bajetto A, Pattarozzi A, Corsaro A, Barbieri F, Daga A, Bosio A, Gatti M, Pisaturo V, Sirito R, Florio T. 2017; Different effects of human umbilical cord mesenchymal stem cells on glioblastoma stem cells by direct cell interaction or via released soluble factors. Front Cell Neurosci. 11:312. DOI: 10.3389/fncel.2017.00312. PMID: 29081734. PMCID: PMC5645520.
Article
33. Bishayee A. 2014; The role of inflammation and liver cancer. Adv Exp Med Biol. 816:401–435. DOI: 10.1007/978-3-0348-0837-8_16. PMID: 24818732.
34. Dennert G, Horneber M. 2006; Selenium for alleviating the side effects of chemotherapy, radiotherapy and surgery in cancer patients. Cochrane Database Syst Rev. (3):CD005037. DOI: 10.1002/14651858.CD005037.pub2. PMID: 16856073. PMCID: PMC6464502.
Article
35. Daher S, Massarwa M, Benson AA, Khoury T. 2018; Current and future treatment of hepatocellular carcinoma: an updated comprehensive review. J Clin Transl Hepatol. 6:69–78. DOI: 10.14218/JCTH.2017.00031. PMID: 29607307. PMCID: PMC5863001.
Article
36. Shen CJ, Chan TF, Chen CC, Hsu YC, Long CY, Lai CS. 2016; Human umbilical cord matrix-derived stem cells expressing interferon-β gene inhibit breast cancer cells via apoptosis. Oncotarget. 7:34172–34179. DOI: 10.18632/oncotarget.8997. PMID: 27129156. PMCID: PMC5085146.
Article
37. Lee SI, Catalano OA, Dehdashti F. 2015; Evaluation of gynecologic cancer with MR imaging, 18F-FDG PET/CT, and PET/MR imaging. J Nucl Med. 56:436–443. DOI: 10.2967/jnumed.114.145011. PMID: 25635136.
Article
38. Spötl L, Sarti A, Dierich MP, Möst J. 1995; Cell membrane labeling with fluorescent dyes for the demonstration of cytokine-induced fusion between monocytes and tumor cells. Cytometry. 21:160–169. DOI: 10.1002/cyto.990210208. PMID: 8582236.
Article
39. Zhang Y, Shi Y, Bai J, Zhang L, Yang Y, Cheng J. 2015; Functional investigation of effects on transplantable bone marrow stem cells label with iron oxide nanoparticles. J Biomater Tissue Eng. 5:486–492. DOI: 10.1166/jbt.2015.1298.
Article
40. Lv H, Wang C, Fang T, Li T, Lv G, Han Q, Yang W, Wang H. 2018; Vitamin C preferentially kills cancer stem cells in hepatocellular carcinoma via SVCT-2. NPJ Precis Oncol. 2:1. DOI: 10.1038/s41698-017-0044-8. PMID: 29872720. PMCID: PMC5871898.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr