Int J Stem Cells.  2020 Mar;13(1):13-23. 10.15283/ijsc19108.

Mesenchymal Stem Cell-Derived Exosomes: A Promising Therapeutic Ace Card to Address Autoimmune Diseases

Affiliations
  • 1Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
  • 2Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
  • 3Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran

Abstract

With the development of novel treatments for autoimmune disorders, it has become a popular research focus which mesenchymal stem cells (MSCs) have the capacity to counteract with autoimmune diseases progression. One of the underlying mechanisms behind their activities is the release of extracellular vesicles especially exosomes. MSC-derived exosomes are hypoimmunogenic nanocarriers which contain numerous immunoregulatory factors and similar to other exosomes, are able to pass through boundaries like the blood-brain barrier (BBB). Accumulating evidence provided by animal studies has demonstrated that MSC-derived exosomes, as a novel therapy, can re-induce self-tolerance, without subsequent complications reported for other treatments. Therefore, therapeutic applications of MSC-derived exosomes are contributing to core advances in the field of autoimmune diseases. Here, we briefly describe the biological characteristics of MSC-derived exosomes and review the experimentally verified outcomes for autoimmune disease therapy purposes.

Keyword

Mesenchymal stem cell; Exosome; Therapeutics; Immunomodulation; Autoimmune diseases

Reference

References

1. Crisan M, Corselli M, Chen CW, Péault B. 2011; Multilineage stem cells in the adult: a perivascular legacy? Organogenesis. 7:101–104. DOI: 10.4161/org.7.2.16150. PMID: 21593599. PMCID: PMC3142446.
2. Friedenstein AJ, Chailakhjan RK, Lalykina KS. 1970; The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 3:393–403. DOI: 10.1111/j.1365-2184.1970.tb00347.x. PMID: 5523063.
Article
3. Murray IR, West CC, Hardy WR, James AW, Park TS, Nguyen A, Tawonsawatruk T, Lazzari L, Soo C, Péault B. 2014; Natural history of mesenchymal stem cells, from vessel walls to culture vessels. Cell Mol Life Sci. 71:1353–1374. DOI: 10.1007/s00018-013-1462-6. PMID: 24158496.
Article
4. Hassan G, Kasem I, Soukkarieh C, Aljamali M. 2017; A Simple method to isolate and expand human umbilical cord derived mesenchymal stem cells: using explant method and umbilical cord blood serum. Int J Stem Cells. 10:184–192. DOI: 10.15283/ijsc17028. PMID: 28844128. PMCID: PMC5741200.
Article
5. Caplan AI. 2008; All MSCs are pericytes? Cell Stem Cell. 3:229–230. DOI: 10.1016/j.stem.2008.08.008. PMID: 18786406.
Article
6. Pham H, Tonai R, Wu M, Birtolo C, Chen M. 2018; CD73, CD90, CD105 and Cadherin-11 RT-PCR screening for mesenchymal stem cells from cryopreserved human cord tissue. Int J Stem Cells. 11:26–38. DOI: 10.15283/ijsc17015. PMID: 29843192. PMCID: PMC5984056.
Article
7. Geevarghese A, Herman IM. 2014; Pericyte-endothelial crosstalk: implications and opportunities for advanced cellular therapies. Transl Res. 163:296–306. DOI: 10.1016/j.trsl.2014.01.011. PMID: 24530608. PMCID: PMC3976718.
Article
8. Guimarães-Camboa N, Cattaneo P, Sun Y, Moore-Morris T, Gu Y, Dalton ND, Rockenstein E, Masliah E, Peterson KL, Stallcup WB, Chen J, Evans SM. 2017; Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell. 20:345–359.e5. DOI: 10.1016/j.stem.2016.12.006. PMID: 28111199. PMCID: PMC5337131.
Article
9. Caplan AI. 2010; What's in a name? Tissue Eng Part A. 16:2415–2417. DOI: 10.1089/ten.tea.2010.0216. PMID: 20412005.
Article
10. Caplan AI. 2017; Mesenchymal stem cells: time to change the name! Stem Cells Transl Med. 6:1445–1451. DOI: 10.1002/sctm.17-0051. PMID: 28452204. PMCID: PMC5689741.
Article
11. Bernardo ME, Fibbe WE. 2013; Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell. 13:392–402. DOI: 10.1016/j.stem.2013.09.006. PMID: 24094322.
Article
12. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM. 2002; Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 99:3838–3843. DOI: 10.1182/blood.V99.10.3838. PMID: 11986244.
Article
13. Bruno S, Deregibus MC, Camussi G. 2015; The secretome of mesenchymal stromal cells: role of extracellular vesicles in immunomodulation. Immunol Lett. 168:154–158. DOI: 10.1016/j.imlet.2015.06.007. PMID: 26086886.
Article
14. Kyurkchiev D, Bochev I, Ivanova-Todorova E, Mourdjeva M, Oreshkova T, Belemezova K, Kyurkchiev S. 2014; Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells. 6:552–570. DOI: 10.4252/wjsc.v6.i5.552. PMID: 25426252. PMCID: PMC4178255.
Article
15. Edgar JR, Eden ER, Futter CE. 2014; Hrs- and CD63-dependent competing mechanisms make different sized endosomal intraluminal vesicles. Traffic. 15:197–211. DOI: 10.1111/tra.12139. PMID: 24279430. PMCID: PMC4253088.
Article
16. Bobrie A, Colombo M, Krumeich S, Raposo G, Théry C. 2012; Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J Extracell Vesicles. 1:18397. DOI: 10.3402/jev.v1i0.18397. PMID: 24009879. PMCID: PMC3760636.
Article
17. Théry C, Boussac M, Véron P, Ricciardi-Castagnoli P, Raposo G, Garin J, Amigorena S. 2001; Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol. 166:7309–7318. DOI: 10.4049/jimmunol.166.12.7309. PMID: 11390481.
Article
18. Cocucci E, Meldolesi J. 2015; Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 25:364–372. DOI: 10.1016/j.tcb.2015.01.004. PMID: 25683921.
Article
19. Akers JC, Gonda D, Kim R, Carter BS, Chen CC. 2013; Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 113:1–11. DOI: 10.1007/s11060-013-1084-8. PMID: 23456661. PMCID: PMC5533094.
Article
20. Hess C, Sadallah S, Hefti A, Landmann R, Schifferli JA. 1999; Ectosomes released by human neutrophils are specialized functional units. J Immunol. 163:4564–4573.
Article
21. Johnstone RM. 1992; The Jeanne Manery-Fisher memorial lecture 1991. Maturation of reticulocytes: formation of exosomes as a mechanism for shedding membrane proteins. Biochem Cell Biol. 70:179–190. DOI: 10.1139/o92-028. PMID: 1515120.
Article
22. Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD, Verkade P, Simons K. 2006; Alzheimer's disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci U S A. 103:11172–11177. DOI: 10.1073/pnas.0603838103. PMID: 16837572. PMCID: PMC1544060.
Article
23. Fevrier B, Vilette D, Archer F, Loew D, Faigle W, Vidal M, Laude H, Raposo G. 2004; Cells release prions in association with exosomes. Proc Natl Acad Sci U S A. 101:9683–9688. DOI: 10.1073/pnas.0308413101. PMID: 15210972. PMCID: PMC470735.
Article
24. Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH, Stefanis L, Vekrellis K. 2010; Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci. 30:6838–6851. DOI: 10.1523/JNEUROSCI.5699-09.2010. PMID: 20484626. PMCID: PMC3842464.
Article
25. Gomes C, Keller S, Altevogt P, Costa J. 2007; Evidence for secretion of Cu,Zn superoxide dismutase via exosomes from a cell model of amyotrophic lateral sclerosis. Neurosci Lett. 428:43–46. DOI: 10.1016/j.neulet.2007.09.024. PMID: 17942226.
Article
26. Tamai K, Tanaka N, Nakano T, Kakazu E, Kondo Y, Inoue J, Shiina M, Fukushima K, Hoshino T, Sano K, Ueno Y, Shimosegawa T, Sugamura K. 2010; Exosome secretion of dendritic cells is regulated by Hrs, an ESCRT-0 protein. Biochem Biophys Res Commun. 399:384–390. DOI: 10.1016/j.bbrc.2010.07.083. PMID: 20673754.
Article
27. Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, Patel T, Piroyan A, Sokolsky M, Kabanov AV, Batrakova EV. 2015; Exosomes as drug delivery vehicles for Parkinson's disease therapy. J Control Release. 207:18–30. DOI: 10.1016/j.jconrel.2015.03.033. PMID: 25836593. PMCID: PMC4430381.
Article
28. Blanchard N, Lankar D, Faure F, Regnault A, Dumont C, Raposo G, Hivroz C. 2002; TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J Immunol. 168:3235–3241. DOI: 10.4049/jimmunol.168.7.3235. PMID: 11907077.
Article
29. Buschow SI, Nolte-'t Hoen EN, van Niel G, Pols MS, ten Broeke T, Lauwen M, Ossendorp F, Melief CJ, Raposo G, Wubbolts R, Wauben MH, Stoorvogel W. 2009; MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic. 10:1528–1542. DOI: 10.1111/j.1600-0854.2009.00963.x. PMID: 19682328.
Article
30. Lo Sicco C, Reverberi D, Balbi C, Ulivi V, Principi E, Pascucci L, Becherini P, Bosco MC, Varesio L, Franzin C, Pozzobon M, Cancedda R, Tasso R. 2017; Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: endorsement of macrophage polarization. Stem Cells Transl Med. 6:1018–1028. DOI: 10.1002/sctm.16-0363. PMID: 28186708. PMCID: PMC5442783.
Article
31. Ti D, Hao H, Tong C, Liu J, Dong L, Zheng J, Zhao Y, Liu H, Fu X, Han W. 2015; LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J Transl Med. 13:308. DOI: 10.1186/s12967-015-0642-6. PMID: 26386558. PMCID: PMC4575470.
Article
32. Bissig C, Gruenberg J. 2014; ALIX and the multivesicular endosome: ALIX in wonderland. Trends Cell Biol. 24:19–25. DOI: 10.1016/j.tcb.2013.10.009. PMID: 24287454.
Article
33. Abrami L, Lindsay M, Parton RG, Leppla SH. , van der Goot FG. 2004; Membrane insertion of anthrax protective antigen and cytoplasmic delivery of lethal factor occur at different stages of the endocytic pathway. J Cell Biol. 166:645–651. DOI: 10.1083/jcb.200312072. PMID: 15337774. PMCID: PMC2172425.
Article
34. Denzer K, van Eijk M, Kleijmeer MJ, Jakobson E, de Groot C, Geuze HJ. 2000; Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J Immunol. 165:1259–1265. DOI: 10.4049/jimmunol.165.3.1259. PMID: 10903724.
Article
35. Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, Lee JW, Matthay MA. 2010; Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells. 28:2229–2238. DOI: 10.1002/stem.544. PMID: 20945332. PMCID: PMC3293245.
Article
36. Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Pérez Lanzón M, Zini N, Naaijkens B, Perut F, Niessen HW, Baldini N, Pegtel DM. 2015; Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther. 6:127. DOI: 10.1186/s13287-015-0116-z. PMID: 26129847. PMCID: PMC4529699.
Article
37. Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L. 2006; Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood. 107:1484–1490. DOI: 10.1182/blood-2005-07-2775. PMID: 16239427.
Article
38. Di Trapani M, Bassi G, Midolo M, Gatti A, Kamga PT, Cassaro A, Carusone R, Adamo A, Krampera M. 2016; Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions. Sci Rep. 6:24120. DOI: 10.1038/srep24120. PMID: 27071676. PMCID: PMC4829861.
Article
39. Eirin A, Zhu XY, Puranik AS, Tang H, McGurren KA, van Wijnen AJ, Lerman A, Lerman LO. 2017; Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation. Kidney Int. 92:114–124. DOI: 10.1016/j.kint.2016.12.023. PMID: 28242034. PMCID: PMC5483390.
Article
40. Tan CY, Lai RC, Wong W, Dan YY, Lim SK, Ho HK. 2014; Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther. 5:76. DOI: 10.1186/scrt465. PMID: 24915963. PMCID: PMC4229780.
Article
41. Okunishi K, Dohi M, Nakagome K, Tanaka R, Mizuno S, Matsumoto K, Miyazaki J, Nakamura T, Yamamoto K. 2005; A novel role of hepatocyte growth factor as an immune regulator through suppressing dendritic cell function. J Immunol. 175:4745–4753. DOI: 10.4049/jimmunol.175.7.4745. PMID: 16177122.
Article
42. Garo LP, Murugaiyan G. 2016; Contribution of MicroRNAs to autoimmune diseases. Cell Mol Life Sci. 73:2041–2051. DOI: 10.1007/s00018-016-2167-4. PMID: 26943802.
Article
43. Harding C, Heuser J, Stahl P. 1983; Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 97:329–339. DOI: 10.1083/jcb.97.2.329. PMID: 6309857. PMCID: PMC2112509.
Article
44. Bigagli E, De Filippo C, Castagnini C, Toti S, Acquadro F, Giudici F, Fazi M, Dolara P, Messerini L, Tonelli F, Luceri C. 2016; DNA copy number alterations, gene expression changes and disease-free survival in patients with colorectal cancer: a 10 year follow-up. Cell Oncol. 39:545–558. DOI: 10.1007/s13402-016-0299-z. PMID: 27709558.
Article
45. Liu Y, Lou G, Li A, Zhang T, Qi J, Ye D, Zheng M, Chen Z. 2018; AMSC-derived exosomes alleviate lipopolysaccharide/d-galactosamine-induced acute liver failure by miR-17-mediated reduction of TXNIP/NLRP3 inflammasome activation in macrophages. EBioMedicine. 36:140–150. DOI: 10.1016/j.ebiom.2018.08.054. PMID: 30197023. PMCID: PMC6197728.
Article
46. Ti D, Hao H, Fu X, Han W. 2016; Mesenchymal stem cells-derived exosomal microRNAs contribute to wound inflammation. Sci China Life Sci. 59:1305–1312. DOI: 10.1007/s11427-016-0240-4. PMID: 27864711.
Article
47. Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, El Oakley RM, Pasterkamp G, de Kleijn DP, Lim SK. 2010; Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 4:214–222. DOI: 10.1016/j.scr.2009.12.003. PMID: 20138817.
Article
48. Choi H, Lee DS. 2016; Illuminating the physiology of extracellular vesicles. Stem Cell Res Ther. 7:55. DOI: 10.1186/s13287-016-0316-1. PMID: 27084088. PMCID: PMC4833943.
Article
49. Li SD, Huang L. 2009; Nanoparticles evading the reticuloendothelial system: role of the supported bilayer. Biochim Biophys Acta. 1788:2259–2266. DOI: 10.1016/j.bbamem.2009.06.022. PMID: 19595666. PMCID: PMC2757503.
Article
50. Klyushnenkova E, Mosca JD, Zernetkina V, Majumdar MK, Beggs KJ, Simonetti DW, Deans RJ, McIntosh KR. 2005; T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci. 12:47–57. DOI: 10.1007/s11373-004-8183-7. PMID: 15864738.
Article
51. Yeo RW, Lai RC, Zhang B, Tan SS, Yin Y, Teh BJ, Lim SK. 2013; Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev. 65:336–341. DOI: 10.1016/j.addr.2012.07.001. PMID: 22780955.
Article
52. Ma ZJ, Wang YH, Li ZG, Wang Y, Li BY, Kang HY, Wu XY. 2019; Immunosuppressive effect of exosomes from mesenchymal stromal cells in defined medium on experimental colitis. Int J Stem Cells. doi: 10.15283/ijsc18139. [Epub ahead of print]. DOI: 10.15283/ijsc18139. PMID: 31242720. PMCID: PMC6881044.
Article
53. Cosenza S, Toupet K, Maumus M, Luz-Crawford P, Blanc-Brude O, Jorgensen C, Noël D. 2018; Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics. 8:1399–1410. DOI: 10.7150/thno.21072. PMID: 29507629. PMCID: PMC5835945.
Article
54. Grange C, Tapparo M, Bruno S, Chatterjee D, Quesenberry PJ, Tetta C, Camussi G. 2014; Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging. Int J Mol Med. 33:1055–1063. DOI: 10.3892/ijmm.2014.1663. PMID: 24573178. PMCID: PMC4020482.
Article
55. Meng F, Wang J, Ping Q, Yeo Y. 2018; Quantitative assessment of nanoparticle biodistribution by fluorescence imaging, revisited. ACS Nano. 12:6458–6468. DOI: 10.1021/acsnano.8b02881. PMID: 29920064. PMCID: PMC6105334.
Article
56. Morishita M, Takahashi Y, Nishikawa M, Sano K, Kato K, Yamashita T, Imai T, Saji H, Takakura Y. 2015; Quantitative analysis of tissue distribution of the B16BL6-derived exosomes using a streptavidin-lactadherin fusion protein and iodine-125-labeled biotin derivative after intravenous injection in mice. J Pharm Sci. 104:705–713. DOI: 10.1002/jps.24251. PMID: 25393546.
Article
57. Badr CE, Tannous BA. 2011; Bioluminescence imaging: progress and applications. Trends Biotechnol. 29:624–633. DOI: 10.1016/j.tibtech.2011.06.010. PMID: 21788092. PMCID: PMC4314955.
Article
58. Geurts JJ, Barkhof F. 2008; Grey matter pathology in multiple sclerosis. Lancet Neurol. 7:841–851. DOI: 10.1016/S1474-4422(08)70191-1.
Article
59. Popescu BF, Lucchinetti CF. 2012; Pathology of demyelinating diseases. Annu Rev Pathol. 7:185–217. DOI: 10.1146/annurev-pathol-011811-132443. PMID: 22313379.
Article
60. Salehi Z, Doosti R, Beheshti M, Janzamin E, Sahraian MA, Izad M. 2016; Differential frequency of CD8+ T cell subsets in multiple sclerosis patients with various clinical patterns. PLoS One. 11:e0159565. DOI: 10.1371/journal.pone.0159565. PMID: 27467597. PMCID: PMC4965085.
Article
61. Tanasescu R, Ionete C, Chou IJ, Constantinescu CS. 2014; Advances in the treatment of relapsing-remitting multiple sclerosis. Biomed J. 37:41–49. DOI: 10.4103/2319-4170.130440. PMID: 24732658.
62. Gholamzad M, Ebtekar M, Ardestani MS, Azimi M, Mahmodi Z, Mousavi MJ, Aslani S. 2019; A comprehensive review on the treatment approaches of multiple sclerosis: currently and in the future. Inflamm Res. 68:25–38. DOI: 10.1007/s00011-018-1185-0. PMID: 30178100.
Article
63. Nakhaei-Nejad M, Barilla D, Lee CH, Blevins G, Giuliani F. 2017; Characterization of lymphopenia in patients with MS treated with dimethyl fumarate and fingolimod. Neurol Neuroimmunol Neuroinflamm. 5:e432. DOI: 10.1212/NXI.0000000000000432. PMID: 29296636. PMCID: PMC5746425.
Article
64. Comi G, Martinelli V, Rodegher M, Moiola L, Bajenaru O, Carra A, Elovaara I, Fazekas F, Hartung HP, Hillert J, King J, Komoly S, Lubetzki C, Montalban X, Myhr KM, Ravnborg M, Rieckmann P, Wynn D, Young C, Filippi M. PreCISe Study Group. 2009; Effect of glatiramer acetate on conversion to clinically definite multiple sclerosis in patients with clinically isolated syndrome (PreCISe study): a randomised, double-blind, placebo-controlled trial. Lancet. 374:1503–1511. DOI: 10.1016/S0140-6736(09)61259-9.
Article
65. Wang M, Yuan Q, Xie L. 2018; Mesenchymal stem cell-based immunomodulation: properties and clinical application. Stem Cells Int. 2018:3057624. DOI: 10.1155/2018/3057624. PMID: 30013600. PMCID: PMC6022321.
Article
66. Emamnejad R, Sahraian M, Shakiba Y, Salehi Z, Masoomi A, Imani D, Najafi F, Laribi B, Shirzad H, Izad M. 2019; Circulating mesenchymal stem cells, stromal derived factor (SDF)-1 and IP-10 levels increased in clinically active multiple sclerosis patients but not in clinically stable patients treated with beta interferon. Mult Scler Relat Disord. 35:233–238. DOI: 10.1016/j.msard.2019.08.013. PMID: 31421626.
Article
67. Sargent A, Shano G, Karl M, Garrison E, Miller C, Miller RH. 2018; Transcriptional profiling of mesenchymal stem cells identifies distinct neuroimmune pathways altered by CNS disease. Int J Stem Cells. 11:48–60. DOI: 10.15283/ijsc17062. PMID: 29699382. PMCID: PMC5984058.
Article
68. Johnson TV, Bull ND, Hunt DP, Marina N, Tomarev SI, Martin KR. 2010; Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma. Invest Ophthalmol Vis Sci. 51:2051–2059. DOI: 10.1167/iovs.09-4509. PMID: 19933193. PMCID: PMC2868400.
Article
69. Herrero C, Pérez-Simón JA. 2010; Immunomodulatory effect of mesenchymal stem cells. Braz J Med Biol Res. 43:425–430. DOI: 10.1590/S0100-879X2010007500033. PMID: 20490429.
Article
70. Nasri F, Mohtasebi MS, Hashemi E, Zarrabi M, Gholijani N, Sarvestani EK. 2018; Therapeutic efficacy of mesenchymal stem cells and mesenchymal stem cells-derived neural progenitors in experimental autoimmune encephalomyelitis. Int J Stem Cells. 11:68–77. DOI: 10.15283/ijsc17052. PMID: 29699380. PMCID: PMC5984060.
Article
71. Marti LC, Ribeiro AA, Hamerschlak N. 2011; Immunomodulatory effect of mesenchymal stem cells. Einstein (Sao Paulo). 9:224–228. DOI: 10.1590/s1679-45082011rw1843. PMID: 26760821.
Article
72. Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, Ju S, Mu J, Zhang L, Steinman L, Miller D, Zhang HG. 2011; Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther. 19:1769–1779. DOI: 10.1038/mt.2011.164. PMID: 21915101. PMCID: PMC3188748.
Article
73. Mokarizadeh A, Delirezh N, Morshedi A, Mosayebi G, Farshid AA, Mardani K. 2012; Microvesicles derived from mesenchymal stem cells: potent organelles for induction of tolerogenic signaling. Immunol Lett. 147(1-2):47–54. DOI: 10.1016/j.imlet.2012.06.001. PMID: 22705267.
Article
74. Laso-García F, Ramos-Cejudo J, Carrillo-Salinas FJ, Otero-Ortega L, Feliú A, Gómez-de Frutos M, Mecha M, Díez-Tejedor E, Guaza C, Gutiérrez-Fernández M. 2018; Therapeutic potential of extracellular vesicles derived from human mesenchymal stem cells in a model of progressive multiple sclerosis. PLoS One. 13:e0202590. DOI: 10.1371/journal.pone.0202590. PMID: 30231069. PMCID: PMC6145506.
Article
75. Li Z, Liu F, He X, Yang X, Shan F, Feng J. 2019; Exosomes derived from mesenchymal stem cells attenuate inflammation and demyelination of the central nervous system in EAE rats by regulating the polarization of microglia. Int Immunopharmacol. 67:268–280. DOI: 10.1016/j.intimp.2018.12.001. PMID: 30572251.
Article
76. Hosseini Shamili F, Alibolandi M, Rafatpanah H, Abnous K, Mahmoudi M, Kalantari M, Taghdisi SM, Ramezani M. 2019; Immunomodulatory properties of MSC-derived exosomes armed with high affinity aptamer toward mylein as a platform for reducing multiple sclerosis clinical score. J Control Release. 299:149–164. DOI: 10.1016/j.jconrel.2019.02.032. PMID: 30807806.
Article
77. Malmström V, Catrina AI, Klareskog L. 2017; The immunopathogenesis of seropositive rheumatoid arthritis: from triggering to targeting. Nat Rev Immunol. 17:60–75. DOI: 10.1038/nri.2016.124. PMID: 27916980.
Article
78. McInnes IB, Schett G. 2017; Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet. 389:2328–2337. DOI: 10.1016/S0140-6736(17)31472-1.
Article
79. Benjamin O, Lappin SL. 2019. Jan. Disease Modifying Anti-Rheumatic Drugs (DMARD). 2019 Oct 2. StatPearls [Internet]. StatPearls Publishing;Treasure Island: Available from: http://www.ncbi.nlm.nih.gov/books/NBK507863/. cited 2019 Jan 2.
80. Cosenza S, Ruiz M, Maumus M, Jorgensen C, Noël D. 2017; Pathogenic or therapeutic extracellular vesicles in rheumatic diseases: role of mesenchymal stem cell-derived vesicles. Int J Mol Sci. 18:E889. DOI: 10.3390/ijms18040889. PMID: 28441721. PMCID: PMC5412468.
Article
81. Withrow J, Murphy C, Liu Y, Hunter M, Fulzele S, Hamrick MW. 2016; Extracellular vesicles in the pathogenesis of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther. 18:286. DOI: 10.1186/s13075-016-1178-8. PMID: 27906035. PMCID: PMC5134070.
Article
82. Conforti A, Scarsella M, Starc N, Giorda E, Biagini S, Proia A, Carsetti R, Locatelli F, Bernardo ME. 2014; Microvescicles derived from mesenchymal stromal cells are not as effective as their cellular counterpart in the ability to modulate immune responses in vitro. Stem Cells Dev. 23:2591–2599. DOI: 10.1089/scd.2014.0091. PMID: 24937591. PMCID: PMC4201301.
Article
83. Chen Z, Wang H, Xia Y, Yan F, Lu Y. 2018; Therapeutic potential of mesenchymal cell-derived miRNA-150-5p-expressing exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF. J Immunol. 201:2472–2482. DOI: 10.4049/jimmunol.1800304. PMID: 30224512. PMCID: PMC6176104.
Article
84. Gao J, Xu K, Zhang G, Han J, Liu Y, Zhang L. 2019; FRI0510 the effect and mechanism of human umbilical cord mesenchymal stem cells-derived exosomes on bone destruction of collagen induced arthritis rats. Ann Rheum Dis. 78:950. DOI: 10.1136/annrheumdis-2019-eular.7325.
85. He P. 2019; AB0291E the effect of human umbilical cord mesenchymal stem cells-derived exosomes on chemokines in collagen-induced arthritis rats. Ann Rheum Dis. 78:1606. DOI: 10.1136/annrheumdis-2019-eular.7165.
86. Bluestone JA, Herold K, Eisenbarth G. 2010; Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 464:1293–1300. DOI: 10.1038/nature08933. PMID: 20432533. PMCID: PMC4959889.
Article
87. Cohen DJ, St Martin L, Christensen LL, Bloom RD, Sung RS. 2006; Kidney and pancreas transplantation in the United States, 1995-2004. Am J Transplant. 6:1153–1169. DOI: 10.1111/j.1600-6143.2006.01272.x. PMID: 16613593.
Article
88. Gruessner AC, Sutherland DE. 2008; Pancreas transplant outcomes for United States (US) cases as reported to the United Network for Organ Sharing (UNOS) and the International Pancreas Transplant Registry (IPTR). Clin Transpl. 45–56.
Article
89. Johnson PR, Jones KE. 2012; Pancreatic islet transplantation. Semin Pediatr Surg. 21:272–280. DOI: 10.1053/j.sempedsurg.2012.05.012. PMID: 22800980.
Article
90. Ballinger WF, Lacy PE. 1972; Transplantation of intact pancreatic islets in rats. Surgery. 72:175–186.
91. Chatenoud L, Primo J, Bach JF. 1997; CD3 antibody-induced dominant self tolerance in overtly diabetic NOD mice. J Immunol. 158:2947–2954.
92. Hirsch R, Gress RE, Pluznik DH, Eckhaus M, Bluestone JA. 1989; Effects of in vivo administration of anti-CD3 monoclonal antibody on T cell function in mice. II. In vivo activation of T cells. J Immunol. 142:737–743.
93. Ferran C, Dautry F, Mérite S, Sheehan K, Schreiber R, Grau G, Bach JF, Chatenoud L. 1994; Anti-tumor necrosis factor modulates anti-CD3-triggered T cell cytokine gene expression in vivo. J Clin Invest. 93:2189–2196. DOI: 10.1172/JCI117215. PMID: 8182150. PMCID: PMC294360.
Article
94. Ezquer F, Ezquer M, Contador D, Ricca M, Simon V, Conget P. 2012; The antidiabetic effect of mesenchymal stem cells is unrelated to their transdifferentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment. Stem Cells. 30:1664–1674. DOI: 10.1002/stem.1132. PMID: 22644660.
Article
95. Nakano M, Nagaishi K, Konari N, Saito Y, Chikenji T, Mizue Y, Fujimiya M. 2016; Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes. Sci Rep. 6:24805. DOI: 10.1038/srep24805. PMID: 27102354. PMCID: PMC4840335.
Article
96. Wen D, Peng Y, Liu D, Weizmann Y, Mahato RI. 2016; Mesenchymal stem cell and derived exosome as small RNA carrier and Immunomodulator to improve islet transplantation. J Control Release. 238:166–175. DOI: 10.1016/j.jconrel.2016.07.044. PMID: 27475298.
Article
97. Nojehdehi S, Soudi S, Hesampour A, Rasouli S, Soleimani M, Hashemi SM. 2018; Immunomodulatory effects of mesenchymal stem cell-derived exosomes on experimental type-1 autoimmune diabetes. J Cell Biochem. 119:9433–9443. DOI: 10.1002/jcb.27260. PMID: 30074271.
Article
98. Rosenbaum JT. 2015; Nibbling away at the diagnosis of idiopathic uveitis. JAMA Ophthalmol. 133:146–147. DOI: 10.1001/jamaophthalmol.2014.4272. PMID: 25356928.
Article
99. Yang P. 2015; Editorial: uveitis: pathology, molecular mechanisms and therapy. Curr Mol Med. 15:510. DOI: 10.2174/1566524015999150804104144. PMID: 26242392.
Article
100. Rosenbaum JT. 2010; Future for biological therapy for uveitis. Curr Opin Ophthalmol. 21:473–477. DOI: 10.1097/ICU.0b013e32833f00b3. PMID: 20829688.
Article
101. Zhang X, Ren X, Li G, Jiao C, Zhang L, Zhao S, Wang J, Han ZC, Li X. 2011; Mesenchymal stem cells ameliorate experimental autoimmune uveoretinitis by comprehensive modulation of systemic autoimmunity. Invest Ophthalmol Vis Sci. 52:3143–3152. DOI: 10.1167/iovs.10-6334. PMID: 21296818.
Article
102. Tasso R, Ilengo C, Quarto R, Cancedda R, Caspi RR, Pennesi G. 2012; Mesenchymal stem cells induce functionally active T-regulatory lymphocytes in a paracrine fashion and ameliorate experimental autoimmune uveitis. Invest Ophthalmol Vis Sci. 53:786–793. DOI: 10.1167/iovs.11-8211. PMID: 22232435. PMCID: PMC3317420.
Article
103. Li G, Yuan L, Ren X, Nian H, Zhang L, Han ZC, Li X, Zhang X. 2013; The effect of mesenchymal stem cells on dynamic changes of T cell subsets in experimental autoimmune uveoretinitis. Clin Exp Immunol. 173:28–37. DOI: 10.1111/cei.12080. PMID: 23607419. PMCID: PMC3694532.
Article
104. Bai L, Shao H, Wang H, Zhang Z, Su C, Dong L, Yu B, Chen X, Li X, Zhang X. 2017; Effects of mesenchymal stem cell-derived exosomes on experimental autoimmune uveitis. Sci Rep. 7:4323. DOI: 10.1038/s41598-017-04559-y. PMID: 28659587. PMCID: PMC5489510.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr