Mycobiology.  2019 Dec;47(4):473-482. 10.1080/12298093.2019.1689037.

A PAS-Containing Histidine Kinase is Required for Conidiation, Appressorium Formation, and Disease Development in the Rice Blast Fungus, Magnaporthe oryzae

Affiliations
  • 1Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University, Chuncheon, Korea. kims@kangwon.ac.kr

Abstract

Rice blast disease, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most important diseases in rice production. PAS (period circadian protein, aryl hydrocarbon receptor nuclear translocator protein, single-minded protein) domains are known to be involved in signal transduction pathways, but their functional roles have not been well studied in fungi. In this study, targeted gene deletion was carried out to investigate the functional roles of the PAS-containing gene MoPAS1 (MGG_02665) in M. oryzae. The deletion mutant ΔMopas1 exhibited easily wettable mycelia, reduced conidiation, and defects in appressorium formation and disease development compared to the wild type and complemented transformant. Exogenous cAMP restored appressorium formation in ΔMopas1, but the shape of the restored appressorium was irregular, indicating that MoPAS1 is involved in sensing the hydrophobic surface. To examine the expression and localization of MoPAS1 in M. oryzae during appressorium development and plant infection, we constructed a MoPAS1:GFP fusion construct. MoPAS1:GFP was observed in conidia and germ tubes at 0 and 2 h post-infection (hpi) on hydrophobic cover slips. By 8 hpi, most of the GFP signal was observed in the appressoria. During invasive growth in host cells, MoPAS1:GFP was found to be fully expressed in not only the appressoria but also invasive hyphae, suggesting that MoPAS may contribute to disease development in host cells. These results expand our knowledge of the roles of PAS-containing regulatory genes in the plant-pathogenic fungus M. oryzae.

Keyword

Magnaporthe oryzae; rice blast; PAS domain

MeSH Terms

Aryl Hydrocarbon Receptor Nuclear Translocator
Ascomycota
Complement System Proteins
Fungi*
Gene Deletion
Genes, Regulator
Histidine*
Hyphae
Magnaporthe*
Oryza*
Phosphotransferases*
Plants
Signal Transduction
Spores, Fungal
Aryl Hydrocarbon Receptor Nuclear Translocator
Complement System Proteins
Histidine
Phosphotransferases
Full Text Links
  • MB
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2022 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr