1. Rogers BA, Sidjabat HE, Paterson DL.
Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemother. 2011; 66:1–14.
Article
2. Naseer U, Sundsfjord A. The CTX-M conundrum: dissemination of plasmids and
Escherichia coli clones. Microb Drug Resist. 2011; 17:83–97.
Article
3. Yang YY, Suh MH. Diversity of genetic environment of
blaCTX-M genes and antimicrobial susceptibility in extendedspectrum β-lactamase producing
Escherichia coli isolated in Korea. J Bacteriol Virol. 2019; 49:95–114.
Article
4. Carattoli A. Plasmids and the spread of resistance. Int J Med Microbiol. 2013; 303:298–304.
Article
5. Sunde M, Simonsen GS, Slettemeås JS, Böckerman I, Norström M. Integron, plasmid and host strain characteristics of Escherichia coli from humans and food included in the Norwegian antimicrobial resistance monitoring programs. PLoS One. 2015; 10:e0128797.
6. Escudero JA, Loot C, Nivina A, Mazel D. The Integron: Adaptation on demand. In : Craig NL, editor. Mobile DNA III. 3rd ed. Washington, DC: ASM Press;2015. p. 139–161.
7. Hickman AB, Dyda F. Mechanisms of DNA transposition. In : Craig NL, editor. Mobile DNA III. 3rd ed. Washington, DC: ASM Press;2015. p. 531–553.
8. Partridge SR, Tsafnat G, Coiera E, Iredell JR. Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol Rev. 2009; 33:757–784.
Article
9. Gillings MR. Integrons: past, present, and future. Microbiol Mol Biol Rev. 2014; 78:257–277.
Article
10. Jové T, Da Re S, Denis F, Mazel D, Ploy MC. Inverse correlation between promoter strength and excision activity in class 1 integrons. PLoS genet. 2010; 6:e1000793.
Article
11. Vinué L, Jové T, Torres C, Ploy MC. Diversity of class 1 integron gene cassette Pc promoter variants in clinical
Escherichia coli strains and description of a new P2 promoter variant. Int J Antimicrob Agents. 2011; 38:526–529.
Article
12. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 24th ed. Wayne: CLSI Press;2014.
13. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012; 18:268–281.
Article
14. Kado CI, Liu ST. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol. 1981; 145:1365–1373.
Article
15. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods. 2005; 63:219–228.
Article
16. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003; 31:3406–3415.
Article
17. El Salabi A, Walsh TR, Chouchani C. Extended spectrum beta-lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gram-negative bacteria. Crit Rev Microbiol. 2013; 39:113–122.
Article
18. Pitout JD, Laupland KB. Extended-spectrum β-lactamase-producing
Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis. 2008; 8:159–166.
Article
19. Ruiz del Castillo B, Vinué L, Román EJ, Guerra B, Carattoli A, Torres C, et al. Molecular characterization of multiresistant
Escherichia coli producing or not extended-spectrum β-lactamases. BMC Microbiol. 2013; 13:84.
Article
20. Li B, Zhao ZC, Wang MH, Huang XH, Pan YH, Cao YP. Antimicrobial resistance and integrons of commensal
Escherichia coli strains from healthy humans in China. J Chemother. 2014; 26:190–192.
Article
21. Kang HY, Jeong YS, Oh JY, Tae SH, Choi CH, Moon DC, et al. Characterization of antimicrobial resistance and class 1 integrons found in
Escherichia coli isolates from humans and animals in Korea. J Antimicrob Chemother. 2005; 55:639–644.
Article
22. Shin HW, Lim J, Kim S, Kim J, Kwon GC, Koo SH. Characterization of trimethoprim-sulfamethoxazole resistance genes and their relatedness to class 1 integron and insertion sequence common region in gram-negative bacilli. J Microbiol Biotechnol. 2015; 25:137–142.
Article
23. Martines-Freijo P, Fluit AC, Schmitz FJ, Grek VS, Verhoef J, Jones ME. Class I integrons in gram-negative isolates from different European hospitals and association with decreased susceptibility to multiple antibiotic compounds. J Antimicrob Chemother. 1998; 42:689–696.
Article
24. Gillings M, Boucher Y, Labbate M, Holmes A, Krishnan S, Holley M, et al. The evolution of class 1 integrons and the rise of antibiotic resistance. J Bacteriol. 2008; 190:5095–5100.
Article
25. Yu HS, Lee JC, Kang HY, Jeong YS, Lee EY, Choi CH, et al. Prevalence of
dfr genes associated with integrons and dissemination of
dfrA17 among urinary isolates of
Escherichia coli in Korea. J Antimicrob Chemother. 2004; 53:445–450.
Article
26. Chen T, Feng Y, Yuan JL, Qi Y, Cao YX, Wu Y. Class 1 integrons contributes to antibiotic resistance among clinical isolates of
Escherichia coli producing extended-spectrum beta-lactamases. Indian J Med Microbiol. 2013; 31:385–389.
Article
27. Seo KW, Lee YJ. Prevalence and characterization of β-lactamase genes and class 1 integrons in multidrug-resistant Escherichia coli isolates from chicken meat in Korea. Microb Drug Resist. 2018.
28. Gu B, Pan S, Wang T, Zhao W, Mei Y, Huang P, et al. Novel cassette arrays of integrons in clinical strains of Enterobacteriaceae in China. Int J Antimibrob Agents. 2008; 32:529–533.
Article
29. Levy-Hara G, Amábile-Cuevas CF, Gould I, Hutchinson J, Abbo L, Saxynger L, et al. “Ten commandments” for the appropriate use of antibiotics by the practicing physician in an outpatient setting. Front Microbiol. 2011; 2:230.
30. Bush K. Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Curr Opin Microbiol. 2010; 13:558–564.
Article
31. Cantón R, Morosini M. Emergence and spread of antibiotic resistance following exposure to antibiotics. FEMS Microbiol Rev. 2011; 35:977–991.
Article
32. Kuo HY, Chang KC, Kuo JW, Yueh HW, Liou ML. Imipenem: a potent inducer of multidrug resistance in Acinetobacter baumannii. Int J Antimicrob Agents. 2012; 39:33–38.
Article
33. Villa L, García-Fernández A, Fortini D, Carattoli A. Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J Antimicrob Chemother. 2010; 65:2518–2529.
Article
34. Bouvier M, Ducos-Galand M, Loot C, Bikard D, Mazel D. Structural features of single-stranded integron cassette attC sites and their role in strand selection. PLoS genet. 2009; 5:e1000632.
Article
35. Cambray G, Sanchez-Alberola N, Campoy S, Guerin E, Da Re S, González-Zorn B, et al. Prevalence of SOS-mediated control of integron integrase expression as an adaptive trait of chromosomal and mobile integrons. Mob DNA. 2011; 2:6.
Article
36. Lu TK, Collins JJ. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci U S A. 2009; 106:4629–4634.
Article
37. López E, Blázquez J. Effect of subinhibitory concentrations of antibiotics on intrachromosomal homologous recombination in
Escherichia coli. Antimicrob Agents Chemother. 2009; 53:3411–3415.
Article
38. Hocquet D, Bertrand X. Metronidazole increases the emergence of ciprofloxacin- and amikacin-resistant
Pseudomonas aeruginosa by inducing the SOS response. J Antimicrob Chemother. 2014; 69:852–854.
Article
39. Baharoglu Z, Bikard D, Mazel D. Conjugative DNA transfer induces the bacterial SOS response and promotes antibiotic resistance development through integron activation. PLoS Genet. 2010; 6:e1001165.
Article
40. Strugeon E, Tilloy V, Ploy MC, Da Re S. The stringent response promotes antibiotic resistance dissemination by regulating integron integrase expression in biofilms. MBio. 2016; 7.
Article