Int J Stem Cells.  2019 Jul;12(2):340-346. 10.15283/ijsc18123.

Hybrid Nanofiber Scaffold-Based Direct Conversion of Neural Precursor Cells/Dopamine Neurons

Affiliations
  • 1Research and Development Center, Jeil Pharmaceutical Company, Yongin, Korea.
  • 2Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Korea. chshpark@hanyang.ac.kr
  • 3School of Mechanical & Aerospace Engineering, Seoul National University, Seoul, Korea.
  • 4Center for Food and Bioconvergence, Department of Food Science and Biotechnology, Seoul National University, Seoul, Korea.
  • 5Research Institute of Advanced Materials, Seoul National University, Seoul, Korea. keesung@snu.ac.kr
  • 6Department of Microbiology, College of Medicine, Hanyang University, Seoul, Korea.

Abstract

The concept of cellular reprogramming was developed to generate induced neural precursor cells (iNPCs)/dopaminergic (iDA) neurons using diverse approaches. Here, we investigated the effects of various nanoscale scaffolds (fiber, dot, and line) on iNPC/iDA differentiation by direct reprogramming. The generation and maturation of iDA neurons (microtubule-associated protein 2-positive and tyrosine hydroxylase-positive) and iNPCs (NESTIN-positive and SOX2-positive) increased on fiber and dot scaffolds as compared to that of the flat (control) scaffold. This study demonstrates that nanotopographical environments are suitable for direct differentiation methods and may improve the differentiation efficiency.

Keyword

Hybrid nanofiber; Direct conversion; Neural precursor; iNPC

MeSH Terms

Cellular Reprogramming
Nanofibers*
Neurons*
Tyrosine
Tyrosine

Figure

  • Fig. 1 Fabrication process of the hybrid nanofiber scaffold and planar SEM images of the fabricated nanopatterns by UV-assisted capillary force lithography (CFL). Scale bars represent 5 and 1 μm in the panel and inset images: (A) Electrospinning process to secure aligned nanofibers and transfer onto the film, (B) Image of the nanofiber based sieve for cell sheet (transfer number: 6, density: 173 fiber/mm) with PDMS frame (20 mm diameter hole, frame size: 30 mm×30 mm, height: 5 mm) and (C) 400 nm diameter and 400 nm pitch dots (left) and 400 nm width and 400 nm pitch lines (right).

  • Fig. 2 Generation of iNPC/iDA neurons from fibroblasts on nanoscale pattern substrates. (A) Schematic diagram depicting the timeline of conversion process. (B) Phase-contrast images of transduced cells on each nanoscale pattern and calculation graph. Scale bar=20 μm.

  • Fig. 3 Characterization of iNPCs among diverse nanoscale pattern surfaces. (A) Phase-contrast images of transduced cells and immunostained image of NPC markers, nestin and SOX2, on each nanoscale pattern. White dot box indicates high magnification images. (B) Calculation graph. Error bars denote the standard error of the mean (SEM, n=3, *p<0.05, **p<0.01). Scale bar=20 μm. D: Dot, L: Line.

  • Fig. 4 Characterization of iNPC-derived DA neurons among diverse nanoscale pattern surfaces. (A) Immunostained image of MAP2 and TH on each nanoscale pattern. (B) Calculation graph. Error bars denote the standard error of the mean (SEM, n=3, *p<0.05). Scale bar=20 μm. D: Dot, L: Line.


Reference

References

1. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010; 463:1035–1041. DOI: 10.1038/nature08797. PMID: 20107439. PMCID: PMC2829121.
Article
2. Kim J, Efe JA, Zhu S, Talantova M, Yuan X, Wang S, Lipton SA, Zhang K, Ding S. Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A. 2011; 108:7838–7843. DOI: 10.1073/pnas.1103113108. PMID: 21521790. PMCID: PMC3093517.
Article
3. Thier M, Wörsdörfer P, Lakes YB, Gorris R, Herms S, Opitz T, Seiferling D, Quandel T, Hoffmann P, Nöthen MM, Brüstle O, Edenhofer F. Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell. 2012; 10:473–479. DOI: 10.1016/j.stem.2012.03.003. PMID: 22445518.
Article
4. Lim MS, Chang MY, Kim SM, Yi SH, Suh-Kim H, Jung SJ, Kim MJ, Kim JH, Lee YS, Lee SY, Kim DW, Lee SH, Park CH. Generation of dopamine neurons from rodent fibroblasts through the expandable neural precursor cell stage. J Biol Chem. 2015; 290:17401–17414. DOI: 10.1074/jbc.M114.629808. PMID: 26023233. PMCID: PMC4498077.
Article
5. Lim MS, Lee SY, Park CH. FGF8 is essential for functionality of induced neural precursor cell-derived dopaminergic neurons. Int J Stem Cells. 2015; 8:228–234. DOI: 10.15283/ijsc.2015.8.2.228. PMID: 26634071. PMCID: PMC4651287.
Article
6. Kim SM, Kim JW, Kwak TH, Park SW, Kim KP, Park H, Lim KT, Kang K, Kim J, Yang JH, Han H, Lee I, Hyun JK, Bae YM, Schöler HR, Lee HT, Han DW. Generation of integration-free induced neural stem cells from mouse fibroblasts. J Biol Chem. 2016; 291:14199–14212. DOI: 10.1074/jbc.M115.713578. PMID: 27189941. PMCID: PMC4933177.
Article
7. Kim J, Kim KP, Lim KT, Lee SC, Yoon J, Song G, Hwang SI, Schöler HR, Cantz T, Han DW. Generation of integration-free induced hepatocyte-like cells from mouse fibroblasts. Sci Rep. 2015; 5:15706. DOI: 10.1038/srep15706. PMID: 26503743. PMCID: PMC4621602.
Article
8. Li X, Zuo X, Jing J, Ma Y, Wang J, Liu D, Zhu J, Du X, Xiong L, Du Y, Xu J, Xiao X, Wang J, Chai Z, Zhao Y, Deng H. Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell. 2015; 17:195–203. DOI: 10.1016/j.stem.2015.06.003. PMID: 26253201.
Article
9. Zheng J, Choi KA, Kang PJ, Hyeon S, Kwon S, Moon JH, Hwang I, Kim YI, Kim YS, Yoon BS, Park G, Lee J, Hong S, You S. A combination of small molecules directly reprograms mouse fibroblasts into neural stem cells. Biochem Biophys Res Commun. 2016; 476:42–48. DOI: 10.1016/j.bbrc.2016.05.080. PMID: 27207831.
Article
10. Lim MS, Kim SM, Lee EH, Park CH. Efficient induction of neural precursor cells from fibroblasts using stromal cell-derived inducing activity. Tissue Eng Regen Med. 2016; 13:554–559. DOI: 10.1007/s13770-016-0012-3. PMID: 30603436. PMCID: PMC6170833.
Article
11. Yim EK, Darling EM, Kulangara K, Guilak F, Leong KW. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials. 2010; 31:1299–1306. DOI: 10.1016/j.biomaterials.2009.10.037. PMID: 19879643. PMCID: PMC2813896.
Article
12. McMurray RJ, Gadegaard N, Tsimbouri PM, Burgess KV, McNamara LE, Tare R, Murawski K, Kingham E, Oreffo RO, Dalby MJ. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater. 2011; 10:637–644. DOI: 10.1038/nmat3058. PMID: 21765399.
Article
13. Kulangara K, Adler AF, Wang H, Chellappan M, Hammett E, Yasuda R, Leong KW. The effect of substrate topography on direct reprogramming of fibroblasts to induced neurons. Biomaterials. 2014; 35:5327–5336. DOI: 10.1016/j.biomaterials.2014.03.034. PMID: 24709523. PMCID: PMC4023960.
Article
14. Yoo J, Noh M, Kim H, Jeon NL, Kim BS, Kim J. Nanogrooved substrate promotes direct lineage reprogramming of fibroblasts to functional induced dopaminergic neurons. Biomaterials. 2015; 45:36–45. DOI: 10.1016/j.biomaterials.2014.12.049. PMID: 25662493.
Article
15. Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005; 310:1139–1143. DOI: 10.1126/science.1116995. PMID: 16293750.
Article
16. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006; 126:677–689. DOI: 10.1016/j.cell.2006.06.044. PMID: 16923388.
Article
17. Anderson JM, Kushwaha M, Tambralli A, Bellis SL, Camata RP, Jun HW. Osteogenic differentiation of human mesenchymal stem cells directed by extracellular matrix-mimicking ligands in a biomimetic self-assembled peptide amphiphile nanomatrix. Biomacromolecules. 2009; 10:2935–2944. DOI: 10.1021/bm9007452. PMID: 19746964. PMCID: PMC2760643.
Article
18. Kurpinski K, Chu J, Hashi C, Li S. Anisotropic mechanosensing by mesenchymal stem cells. Proc Natl Acad Sci U S A. 2006; 103:16095–16100. DOI: 10.1073/pnas.0604182103. PMID: 17060641. PMCID: PMC1637542.
Article
19. O’Cearbhaill ED, Punchard MA, Murphy M, Barry FP, McHugh PE, Barron V. Response of mesenchymal stem cells to the biomechanical environment of the endothelium on a flexible tubular silicone substrate. Biomaterials. 2008; 29:1610–1619. DOI: 10.1016/j.biomaterials.2007.11.042. PMID: 18194813.
Article
20. Ruiz SA, Chen CS. Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells. 2008; 26:2921–2927. DOI: 10.1634/stemcells.2008-0432. PMID: 18703661. PMCID: PMC2693100.
Article
21. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004; 6:483–495. DOI: 10.1016/S1534-5807(04)00075-9. PMID: 15068789.
Article
22. Park J, Cho CH, Parashurama N, Li Y, Berthiaume F, Toner M, Tilles AW, Yarmush ML. Microfabrication-based modulation of embryonic stem cell differentiation. Lab Chip. 2007; 7:1018–1028. DOI: 10.1039/b704739h. PMID: 17653344.
Article
23. Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CD, Oreffo RO. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater. 2007; 6:997–1003. DOI: 10.1038/nmat2013. PMID: 17891143.
Article
24. Oh S, Brammer KS, Li YS, Teng D, Engler AJ, Chien S, Jin S. Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci U S A. 2009; 106:2130–2135. DOI: 10.1073/pnas.0813200106. PMID: 19179282. PMCID: PMC2650120.
Article
25. Lee MR, Kwon KW, Jung H, Kim HN, Suh KY, Kim K, Kim KS. Direct differentiation of human embryonic stem cells into selective neurons on nanoscale ridge/groove pattern arrays. Biomaterials. 2010; 31:4360–4366. DOI: 10.1016/j.biomaterials.2010.02.012. PMID: 20202681.
Article
26. Kim HN, Kang DH, Kim MS, Jiao A, Kim DH, Suh KY. Patterning methods for polymers in cell and tissue engineering. Ann Biomed Eng. 2012; 40:1339–1355. DOI: 10.1007/s10439-012-0510-y. PMID: 22258887. PMCID: PMC5439960.
Article
27. Li H, Wen F, Chen H, Pal M, Lai Y, Zhao AZ, Tan LP. Micropatterning extracellular matrix proteins on electrospun fibrous substrate promote human mesenchymal stem cell differentiation toward neurogenic lineage. ACS Appl Mater Interfaces. 2016; 8:563–573. DOI: 10.1021/acsami.5b09588. PMID: 26654444.
Article
28. You MH, Kwak MK, Kim DH, Kim K, Levchenko A, Kim DY, Suh KY. Synergistically enhanced osteogenic differentiation of human mesenchymal stem cells by culture on nanostructured surfaces with induction media. Biomacromolecules. 2010; 11:1856–1862. DOI: 10.1021/bm100374n. PMID: 20568737. PMCID: PMC2921863.
Article
29. Roberts JN, Sahoo JK, McNamara LE, Burgess KV, Yang J, Alakpa EV, Anderson HJ, Hay J, Turner LA, Yarwood SJ, Zelzer M, Oreffo RO, Ulijn RV, Dalby MJ. Dynamic surfaces for the study of mesenchymal stem cell growth through adhesion regulation. ACS Nano. 2016; 10:6667–6679. DOI: 10.1021/acsnano.6b01765. PMID: 27322014. PMCID: PMC4963921.
Article
30. Ventre M, Netti PA. Engineering cell instructive materials to control cell fate and functions through material cues and surface patterning. ACS Appl Mater Interfaces. 2016; 8:14896–14908. DOI: 10.1021/acsami.5b08658. PMID: 26693600.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr