1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998; 282:1145–1147. DOI:
10.1126/science.282.5391.1145. PMID:
9804556.
Article
2. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007; 318:1917–1920. DOI:
10.1126/science.1151526. PMID:
18029452.
Article
4. Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol. 2001; 19:971–974. DOI:
10.1038/nbt1001-971. PMID:
11581665.
Article
5. Richards M, Fong CY, Chan WK, Wong PC, Bongso A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol. 2002; 20:933–936. DOI:
10.1038/nbt726. PMID:
12161760.
Article
6. Richards M, Tan S, Fong CY, Biswas A, Chan WK, Bongso A. Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells. Stem Cells. 2003; 21:546–556. DOI:
10.1634/stemcells.21-5-546. PMID:
12968109.
Article
7. Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, Crandall LJ, Daigh CA, Conard KR, Piekarczyk MS, Llanas RA, Thomson JA. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol. 2006; 24:185–187. DOI:
10.1038/nbt1177. PMID:
16388305.
Article
8. Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, Smuga-Otto K, Howden SE, Diol NR, Propson NE, Wagner R, Lee GO, Antosiewicz-Bourget J, Teng JM, Thomson JA. Chemically defined conditions for human iPSC derivation and culture. Nat Methods. 2011; 8:424–429. DOI:
10.1038/nmeth.1593. PMID:
21478862. PMCID:
PMC3084903.
Article
9. Yasuda SY, Ikeda T, Shahsavarani H, Yoshida N, Nayer B, Hino M, Sharma NV, Suemori H, Hasegawa K. Chemically defined and growth-factor-free culture system for the expansion and derivation of human pluripotent stem cells. Nat Biomed Eng. 2018; 2:173–182. DOI:
10.1038/s41551-018-0200-7. PMID:
31015717.
Article
10. Phadnis SM, Loewke NO, Dimov IK, Pai S, Amwake CE, Solgaard O, Baer ™, Chen B, Pera RAR. Dynamic and social behaviors of human pluripotent stem cells. Sci Rep. 2015; 5:14209. DOI:
10.1038/srep14209. PMID:
26381699. PMCID:
PMC4585647.
Article
11. Jacobs K, Zambelli F, Mertzanidou A, Smolders I, Geens M, Nguyen HT, Barbé L, Sermon K, Spits C. Higher-density culture in human embryonic stem cells results in DNA damage and genome instability. Stem Cell Reports. 2016; 6:330–341. DOI:
10.1016/j.stemcr.2016.01.015. PMID:
26923824. PMCID:
PMC4788786.
Article
12. Hongisto H, Vuoristo S, Mikhailova A, Suuronen R, Virtanen I, Otonkoski T, Skottman H. Laminin-511 expression is associated with the functionality of feeder cells in human embryonic stem cell culture. Stem Cell Res. 2012; 8:97–108. DOI:
10.1016/j.scr.2011.08.005. PMID:
22099024.
Article
13. Inzunza J, Gertow K, Strömberg MA, Matilainen E, Blennow E, Skottman H, Wolbank S, Ahrlund-Richter L, Hovatta O. Derivation of human embryonic stem cell lines in serum replacement medium using postnatal human fibroblasts as feeder cells. Stem Cells. 2005; 23:544–549. DOI:
10.1634/stemcells.2004-0201. PMID:
15790775.
Article
14. Viswanathan P, Gaskell T, Moens N, Culley OJ, Hansen D, Gervasio MK, Yeap YJ, Danovi D. Human pluripotent stem cells on artificial microenvironments: a high content perspective. Front Pharmacol. 2014; 5:150. DOI:
10.3389/fphar.2014.00150. PMID:
25071572. PMCID:
PMC4078252.
Article
18. Timpl R, Rohde H, Robey PG, Rennard SI, Foidart JM, Martin GR. Laminin--a glycoprotein from basement membranes. J Biol Chem. 1979; 254:9933–9937. PMID:
114518.
Article
19. Chung AE, Jaffe R, Freeman IL, Vergnes JP, Braginski JE, Carlin B. Properties of a basement membrane-related glycoprotein synthesized in culture by a mouse embryonal carcinoma-derived cell line. Cell. 1979; 16:277–287. DOI:
10.1016/0092-8674(79)90005-9. PMID:
88263.
Article
20. Hassell JR, Robey PG, Barrach HJ, Wilczek J, Rennard SI, Martin GR. Isolation of a heparan sulfate-containing proteoglycan from basement membrane. Proc Natl Acad Sci U S A. 1980; 77:4494–4498. DOI:
10.1073/pnas.77.8.4494. PMID:
6449008. PMCID:
PMC349870.
Article
21. Carlin B, Jaffe R, Bender B, Chung AE. Entactin, a novel basal lamina-associated sulfated glycoprotein. J Biol Chem. 1981; 256:5209–5214. PMID:
6262321.
Article
24. Hierck BP, Thorsteinsdóttir S, Niessen CM, Freund E, Iperen LV, Feyen A, Hogervorst F, Poelmann RE, Mummery CL, Sonnenberg A. Variants of the alpha 6 beta 1 laminin receptor in early murine development: distribution, molecular cloning and chromosomal localization of the mouse integrin alpha 6 subunit. Cell Adhes Commun. 1993; 1:33–53. DOI:
10.3109/15419069309095680. PMID:
8081870.
Article
25. Cooper HM, Tamura RN, Quaranta V. The major laminin receptor of mouse embryonic stem cells is a novel isoform of the alpha 6 beta 1 integrin. J Cell Biol. 1991; 115:843–850. DOI:
10.1083/jcb.115.3.843. PMID:
1833411. PMCID:
PMC2289180.
Article
26. Kleinman HK, McGarvey ML, Liotta LA, Robey PG, Tryggvason K, Martin GR. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry. 1982; 21:6188–6193. DOI:
10.1021/bi00267a025. PMID:
6217835.
Article
27. Kleinman HK, McGarvey ML, Hassell JR, Martin GR. Formation of a supramolecular complex is involved in the reconstitution of basement membrane components. Biochemistry. 1983; 22:4969–4974. DOI:
10.1021/bi00290a014. PMID:
6227336.
Article
28. Mackay AR, Gomez DE, Cottam DW, Rees RC, Nason AM, Thorgeirsson UP. Identification of the 72-kDa (MMP-2) and 92-kDa (MMP-9) gelatinase/type IV collagenase in preparations of laminin and Matrigel. Biotechniques. 1993; 15:1048–1051. PMID:
8292337.
29. Vukicevic S, Kleinman HK, Luyten FP, Roberts AB, Roche NS, Reddi AH. Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp Cell Res. 1992; 202:1–8. DOI:
10.1016/0014-4827(92)90397-Q. PMID:
1511725.
Article
31. Li J, Bardy J, Yap LY, Chen A, Nurcombe V, Cool SM, Oh SK, Birch WR. Impact of vitronectin concentration and surface properties on the stable propagation of human embryonic stem cells. Biointerphases. 2010; 5:FA132–FA142. DOI:
10.1116/1.3525804. PMID:
21171706.
Article
34. Braam SR, Zeinstra L, Litjens S, Ward-van Oostwaard D, van den Brink S, van Laake L, Lebrin F, Kats P, Hochstenbach R, Passier R, Sonnenberg A, Mummery CL. Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells. 2008; 26:2257–2265. DOI:
10.1634/stemcells.2008-0291. PMID:
18599809.
Article
37. Li Y, Powell S, Brunette E, Lebkowski J, Mandalam R. Expansion of human embryonic stem cells in defined serum- free medium devoid of animal-derived products. Biotechnol Bioeng. 2005; 91:688–698. DOI:
10.1002/bit.20536. PMID:
15971228.
Article
38. Domogatskaya A, Rodin S, Boutaud A, Tryggvason K. Laminin-511 but not -332, -111, or -411 enables mouse embryonic stem cell self-renewal in vitro. Stem Cells. 2008; 26:2800–2809. DOI:
10.1634/stemcells.2007-0389. PMID:
18757303.
Article
39. Rodin S, Domogatskaya A, Ström S, Hansson EM, Chien KR, Inzunza J, Hovatta O, Tryggvason K. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol. 2010; 28:611–615. DOI:
10.1038/nbt.1620. PMID:
20512123.
Article
40. Rodin S, Antonsson L, Hovatta O, Tryggvason K. Monolayer culturing and cloning of human pluripotent stem cells on laminin-521-based matrices under xeno-free and chemically defined conditions. Nat Protoc. 2014; 9:2354–2368. DOI:
10.1038/nprot.2014.159. PMID:
25211513.
Article
41. Villa-Diaz LG, Kim JK, Laperle A, Palecek SP, Krebsbach PH. Inhibition of focal adhesion kinase signaling by integrin α6β1 supports human pluripotent stem cell self-renewal. Stem Cells. 2016; 34:1753–1764. DOI:
10.1002/stem.2349. PMID:
26930028.
Article
44. Draper JS, Fox V. Human embryonic stem cells: multi-lineage differentiation and mechanisms of self-renewal. Arch Med Res. 2003; 34:558–564. DOI:
10.1016/j.arcmed.2003.08.006.
Article
45. Inniss K, Moore H. Mediation of apoptosis and proliferation of human embryonic stem cells by sphingosine-1-phosphate. Stem Cells Dev. 2006; 15:789–796. DOI:
10.1089/scd.2006.15.789. PMID:
17253942.
Article
46. Kim MK, Park KS, Lee H, Kim YD, Yun J, Bae YS. Phytosphingosine-1-phosphate stimulates chemotactic migration of L2071 mouse fibroblasts via pertussis toxin-sensitive G-proteins. Exp Mol Med. 2007; 39:185–194. DOI:
10.1038/emm.2007.21. PMID:
17464180.
Article