1. Agostoni C, Manzoni P. Nutrition and neurocognitive development. Early Hum Dev. 2013; 89:Suppl 1. S1–S3.
Article
2. Prado EL, Dewey KG. Nutrition and brain development in early life. Nutr Rev. 2014; 72:267–284.
Article
3. Grantham-McGregor S, Cheung YB, Cueto S, Glewwe P, Richter L, Strupp B. International Child Development Steering Group. Developmental potential in the first 5 years for children in developing countries. Lancet. 2007; 369:60–70.
Article
4. Black MM. Micronutrient deficiencies and cognitive functioning. J Nutr. 2003; 133:3927S–31S.
Article
5. Uauy R, Dangour AD. Nutrition in brain development and aging: role of essential fatty acids. Nutr Rev. 2006; 64:S24–33.
Article
6. Ulmer S, Backens M, Ahlhelm FJ. Basic principles and clinical applications of magnetic resonance spectroscopy in neuroradiology. J Comput Assist Tomogr. 2016; 40:1–13.
Article
8. Erol N, Sezgin N, Savasir I. Validity studies for development-screening inventory. Turk J Psychol. 1993; 8:16–22.
9. Savasir I, Sezgin N, Erol N. Handbook of Ankara development-screening inventory. 2nd ed. Ankara: Rekmay;1998.
10. Hamaguchi H, Cleve H. Solubilization of human erythrocyte membrane glycoproteins and separation of the MN glycoprotein from a glycoprotein with I, S, and A activity. Biochim Biophys Acta. 1972; 278:271–280.
Article
11. Sattler W, Puhl H, Hayn M, Kostner GM, Esterbauer H. Determination of fatty acids in the main lipoprotein classes by capillary gas chromatography: BF3/methanol transesterification of lyophilized samples instead of Folch extraction gives higher yields. Anal Biochem. 1991; 198:184–190.
Article
12. Granados-Rojas L, Serrano N, Gutiérrez-Ospina G, Díaz-Cintra S. Prenatal protein malnutrition differentially affects the volume of the granule layer and mossy fibers in young male and female rats. Proc West Pharmacol Soc. 2002; 45:53–54.
13. Mathangi DC, Namasivayam A. Effect of chronic protein restriction on motor co-ordination and brain neurotransmitters in albino rats. Food Chem Toxicol. 2001; 39:1039–1043.
Article
14. Alamy M, Bengelloun WA. Malnutrition and brain development: an analysis of the effects of inadequate diet during different stages of life in rat. Neurosci Biobehav Rev. 2012; 36:1463–1480.
Article
15. Benítez-Bribiesca L, De la Rosa-Alvarez I, Mansilla-Olivares A. Dendritic spine pathology in infants with severe protein-calorie malnutrition. Pediatrics. 1999; 104:e21.
Article
16. Nyaradi A, Li J, Hickling S, Foster J, Oddy WH. The role of nutrition in children's neurocognitive development, from pregnancy through childhood. Front Hum Neurosci. 2013; 7:97.
Article
17. Engle PL, Fernández PD. INCAP studies of malnutrition and cognitive behavior. Food Nutr Bull. 2010; 31:83–94.
Article
18. Isik Y, Kalyoncu M, Okten A. Serum leptin levels in marasmic children and the relationship between leptin and lipid profile. Ann Nutr Metab. 2004; 48:259–262.
Article
19. Akuyam A, Isah HS, Ogala WN. Serum lipid profile in malnourished Nigerian children in Zaria. Niger Postgrad Med J. 2008; 15:192–196.
20. Fageer SA, Karar TA, Hag SM. Assessment of plasma levels of proteins, total cholesterol and high density. J Sci Technol. 2013; 14:35–43.
21. Veiga GR, Ferreira HS, Sawaya AL, Calado J, Florêncio TM. Dyslipidaemia and undernutrition in children from impoverished areas of Maceió, state of Alagoas, Brazil. Int J Environ Res Public Health. 2010; 7:4139–4151.
Article
22. Chisti MJ, Salam MA, Ashraf H, Faruque AS, Bardhan PK, Shahid AS, et al. Prevalence, clinical predictors, and outcome of hypocalcaemia in severely-malnourished under-five children admitted to an urban hospital in Bangladesh: a case-control study. J Health Popul Nutr. 2014; 32:270–275.
23. Singla PN, Chand P, Kumar A, Kachhawaha JS. Serum magnesium levels in protein-energy malnutrition. J Trop Pediatr. 1998; 44:117–119.
24. El-khayat H, Shaaban S, Emam EK, Elwakkad A. Cognitive functions in protein-energy malnutrition: in relation to long chain-polyunsaturated fatty acids. Pak J Biol Sci. 2007; 10:1773–1781.
Article
25. Gil A, Ramirez M, Gil M. Role of long-chain polyunsaturated fatty acids in infant nutrition. Eur J Clin Nutr. 2003; 57:Suppl 1. S31–S34.
Article
26. Schulzke SM, Patole SK, Simmer K. Long-chain polyunsaturated fatty acid supplementation in preterm infants. Cochrane Database Syst Rev. 2011; CD000375.
Article
27. Smithers LG, Gibson RA, Makrides M. Maternal supplementation with docosahexaenoic acid during pregnancy does not affect early visual development in the infant: a randomized controlled trial. Am J Clin Nutr. 2011; 93:1293–1299.
Article
28. McCann JC, Ames BN. Is docosahexaenoic acid, an n-3 long-chain polyunsaturated fatty acid, required for development of normal brain function? An overview of evidence from cognitive and behavioral tests in humans and animals. Am J Clin Nutr. 2005; 82:281–295.
Article
29. Simmer K, Patole SK, Rao SC. Long-chain polyunsaturated fatty acid supplementation in infants born at term. Cochrane Database Syst Rev. 2008; CD000376.
Article
30. Kendall GS, Melbourne A, Johnson S, Price D, Bainbridge A, Gunny R, et al. White matter NAA/Cho and Cho/Cr ratios at MR spectroscopy are predictive of motor outcome in preterm infants. Radiology. 2014; 271:230–238.
Article
31. Guo L, Wang D, Bo G, Zhang H, Tao W, Shi Y. Early identification of hypoxic-ischemic encephalopathy by combination of magnetic resonance (MR) imaging and proton MR spectroscopy. Exp Ther Med. 2016; 12:2835–2842.
Article
32. Nassar M, Shaaban S, Abbas Y, Galal A, Naguib A, Kamal El-Deen A. Proton Magnetic Resonance Spectroscopy in protein energy malnutrition patients. J Pediatr Gastroenterol Nutr. 2011; 52:Suppl 1. e63.
33. Filippi CG, Uluğ AM, Deck MD, Zimmerman RD, Heier LA. Developmental delay in children: assessment with proton MR spectroscopy. AJNR Am J Neuroradiol. 2002; 23:882–888.
34. Hart PH, Lucas RM, Walsh JP, Zosky GR, Whitehouse AJ, Zhu K, et al. Vitamin D in fetal development: findings from a birth cohort study. Pediatrics. 2015; 135:e167–73.
Article
35. Schlögl M, Holick MF. Vitamin D and neurocognitive function. Clin Interv Aging. 2014; 9:559–568.