Anesth Pain Med.  2018 Oct;13(4):409-414. 10.17085/apm.2018.13.4.409.

Effect of levetiracetam on rocuronium duration in patients undergoing cerebrovascular surgery

Affiliations
  • 1Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea. ehdal34@catholic.ac.kr

Abstract

BACKGROUND
It has long been held that antiepileptics reduce the duration of action, and increase the requirement for, neuromuscular blocking agents. However, levetiracetam, a relatively novel antiepileptic agent, possesses different pharmacokinetic properties to other, conventional antiepileptics, such that its effect on neuromuscular blocking agents might also differ. The purpose of this retrospective study is to investigate the effect of levetiracetam on the clinical duration of rocuronium.
METHODS
In this study, the duration of neuromuscular blockade induced by rocuronium was compared between control and levetiracetam-receiving groups. The data were retrieved from one of our previous studies.
RESULTS
The control and levetiracetam groups comprised 16 and 13 patients, respectively, all of whom underwent cerebrovascular surgery. Subjects received supplementary rocuronium (0.15 mg/kg) whenever the train-of-four count reached 2 during surgery. The interval between supplementary rocuronium (0.15 mg/kg) injections was significantly longer in the levetiracetam vs. control group (50 and 39 minutes, respectively; P = 0.036).
CONCLUSIONS
The present results challenge the convention that antiepileptics decrease the duration of action of neuromuscular blockers, thereby alerting clinicians to the possibility of prolonged neuromuscular blockade in patients taking levetiracetam. Anesthetic management should encompass careful neuromuscular monitoring in such patients.

Keyword

Anticonvulsants; Neuromuscular blockade; Neuromuscular nondepolarizing agents

MeSH Terms

Anticonvulsants
Humans
Neuromuscular Blockade
Neuromuscular Blocking Agents
Neuromuscular Monitoring
Neuromuscular Nondepolarizing Agents
Retrospective Studies
Anticonvulsants
Neuromuscular Blocking Agents
Neuromuscular Nondepolarizing Agents

Reference

REFERENCE

1. Mbizvo GK, Dixon P, Hutton JL, Marson AG. Levetiracetam add-on for drug-resistant focal epilepsy:an updated Cochrane Review. Cochrane Database Syst Rev. 2012; (9):CD001901. PMID: 22972056.
2. Nunes VD, Sawyer L, Neilson J, Sarri G, Cross JH. Diagnosis and management of the epilepsies in adults and children:summary of updated NICE guidance. BMJ. 2012; 344:e281. DOI: 10.1136/bmj.e281. PMID: 22282528.
3. Perks A, Cheema S, Mohanraj R. Anaesthesia and epilepsy. Br J Anaesth. 2012; 108:562–71. DOI: 10.1093/bja/aes027. PMID: 22408271.
4. Klimek M, Dammers R. Antiepileptic drug therapy in the perioperative course of neurosurgical patients. Curr Opin Anaesthesiol. 2010; 23:564–7. DOI: 10.1097/ACO.0b013e32833e14f2. PMID: 20689411.
5. Siomin V, Angelov L, Li L, Vogelbaum MA. Results of a survey of neurosurgical practice patterns regarding the prophylactic use of anti-epilepsy drugs in patients with brain tumors. J Neurooncol. 2005; 74:211–5. DOI: 10.1007/s11060-004-6912-4. PMID: 16193395.
6. Naguib M, Lien CA. Pharmacology of muscle relaxants and their antagonists. Miller RD, Eriksson LI, Fleisher LA, Wiener-Kronish JP, Young WL, editors. Miller's Anesthesia. 7th ed. Philadelphia: Churchill Livingstone Elsevier;2009. p. 859–911.
7. Patsalos PN. Clinical pharmacokinetics of levetiracetam. Clin Pharmacokinet. 2004; 43:707–24. DOI: 10.2165/00003088-200443110-00002. PMID: 15301575.
8. Kern K, Schebesch KM, Schlaier J, Hansen E, Feigl GC, Brawanski AT, et al. Levetiracetam compared to phenytoin for the prevention of postoperative seizures after craniotomy for intracranial tumours in patients without epilepsy. J Clin Neurosci. 2012; 19:99–100. DOI: 10.1016/j.jocn.2011.07.021. PMID: 22133815.
9. Lee YJ, Kim T, Bae SH, Kim YH, Han JH, Yun CH, et al. Levetiracetam compared with valproic acid for the prevention of postoperative seizures after supratentorial tumor surgery:a retrospective chart review. CNS Drugs. 2013; 27:753–9. DOI: 10.1007/s40263-013-0094-6. PMID: 23921717.
10. Kim MH, Hwang JW, Jeon YT, Do SH. Effects of valproic acid and magnesium sulphate on rocuronium requirement in patients undergoing craniotomy for cerebrovascular surgery. Br J Anaesth. 2012; 109:407–12. DOI: 10.1093/bja/aes218. PMID: 22767646.
11. Fuchs-Buder T, Claudius C, Skovgaard LT, Eriksson LI, Mirakhur RK, Viby-Mogensen J. Good clinical research practice in pharmacodynamic studies of neuromuscular blocking agents II:the Stockholm revision. Acta Anaesthesiol Scand. 2007; 51:789–808. DOI: 10.1111/j.1399-6576.2007.01352.x. PMID: 17635389.
12. Luna-Tortós C, Fedrowitz M, Löscher W. Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmacology. 2008; 55:1364–75. DOI: 10.1016/j.neuropharm.2008.08.032.
13. Zhou SF. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica. 2008; 38:802–32. DOI: 10.1080/00498250701867889. PMID: 18668431.
14. Smit JW, Duin E, Steen H, Oosting R, Roggeveld J, Meijer DK. Interactions between P-glycoprotein substrates and other cationic drugs at the hepatic excretory level. Br J Pharmacol. 1998; 123:361–70. DOI: 10.1038/sj.bjp.0701606. PMID: 9504375. PMCID: PMC1565173.
15. Varma MV, Ashokraj Y, Dey CS, Panchagnula R. P-glycoprotein inhibitors and their screening:a perspective from bioavailability enhancement. Pharmacol Res. 2003; 48:347–59. DOI: 10.1016/S1043-6618(03)00158-0.
16. Zhang C, Kwan P, Zuo Z, Baum L. The transport of antiepileptic drugs by P-glycoprotein. Adv Drug Deliv Rev. 2012; 64:930–42. DOI: 10.1016/j.addr.2011.12.003. PMID: 22197850.
17. Linnet K, Ejsing TB. A review on the impact of P-glycoprotein on the penetration of drugs into the brain. Focus on psychotropic drugs. Eur Neuropsychopharmacol. 2008; 18:157–69. DOI: 10.1016/j.euroneuro.2007.06.003. PMID: 17683917.
18. West CL, Mealey KL. Assessment of antiepileptic drugs as substrates for canine P-glycoprotein. Am J Vet Res. 2007; 68:1106–10. DOI: 10.2460/ajvr.68.10.1106. PMID: 17916018.
19. Smit JW, Schinkel AH, Müller M, Weert B, Meijer DK. Contribution of the murine mdr1a P-glycoprotein to hepatobiliary and intestinal elimination of cationic drugs as measured in mice with an mdr1a gene disruption. Hepatology. 1998; 27:1056–63. DOI: 10.1002/hep.510270422. PMID: 9537446.
20. Soriano SG, Martyn JA. Antiepileptic-induced resistance to neuromuscular blockers:mechanisms and clinical significance. Clin Pharmacokinet. 2004; 43:71–81. DOI: 10.2165/00003088-200443020-00001. PMID: 14748617.
21. Soriano SG, Sullivan LJ, Venkatakrishnan K, Greenblatt DJ, Martyn JA. Pharmacokinetics and pharmacodynamics of vecuronium in children receiving phenytoin or carbamazepine for chronic anticonvulsant therapy. Br J Anaesth. 2001; 86:223–9. DOI: 10.1093/bja/86.2.223. PMID: 11573664.
22. Whalley DG, Ebrahim Z. Influence of carbamazepine on the dose-response relationship of vecuronium. Br J Anaesth. 1994; 72:125–6. DOI: 10.1093/bja/72.1.125.
23. Fernández-Candil J, Gambús PL, Trocóniz IF, Valero R, Carrero E, Bueno L, et al. Pharmacokinetic-pharmacodynamic modeling of the influence of chronic phenytoin therapy on the rocuronium bromide response in patients undergoing brain surgery. Eur J Clin Pharmacol. 2008; 64:795–806. DOI: 10.1007/s00228-008-0485-7.
24. Spacek A, Nickl S, Neiger FX, Nigrovic V, Ullrich OW, Weindmayr-Goettel M, et al. Augmentation of the rocuronium-induced neuromuscular block by the acutely administered phenytoin. Anesthesiology. 1999; 90:1551–5. DOI: 10.1097/00000542-199906000-00009. PMID: 10360851.
25. Murphy GS, Brull SJ. Residual neuromuscular block:lessons unlearned. Part I:definitions, incidence, and adverse physiologic effects of residual neuromuscular block. Anesth Analg. 2010; 111:120–8. DOI: 10.1213/ANE.0b013e3181da832d. PMID: 20442260.
26. Naguib M, Kopman AF, Lien CA, Hunter JM, Lopez A, Brull SJ. A survey of current management of neuromuscular block in the United States and Europe. Anesth Analg. 2010; 111:110–9. DOI: 10.1213/ANE.0b013e3181c07428. PMID: 19910616.
27. Srivastava A, Hunter JM. Reversal of neuromuscular block. Br J Anaesth. 2009; 103:115–29. DOI: 10.1093/bja/aep093. PMID: 19468024.
28. Sloan TB, Heyer EJ. Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord. J Clin Neurophysiol. 2002; 19:430–43. DOI: 10.1097/00004691-200210000-00006.
29. Lotto ML, Banoub M, Schubert A. Effects of anesthetic agents and physiologic changes on intraoperative motor evoked potentials. J Neurosurg Anesthesiol. 2004; 16:32–42. DOI: 10.1097/00008506-200401000-00008. PMID: 14676568.
30. Lazarowski A, Czornyj L, Lubienieki F, Girardi E, Vazquez S, D'Giano C. ABC transporters during epilepsy and mechanisms underlying multidrug resistance in refractory epilepsy. Epilepsia. 2007; 48(Suppl 5):140–9. DOI: 10.1111/j.1528-1167.2007.01302.x. PMID: 17910594.
Full Text Links
  • APM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr